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The object of the present paper is to study the 𝑸 tensor of the canonical paracontact connection in a para-Sasakian manifold. 

Also, locally 𝑸𝝓-symmetric para-Sasakian manifold and 𝑸𝝓-recurrent para-Sasakian manifold with respect to the canonical 

paracontact connection have been studied.  
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1. INTRODUCTION 

The notion of the almost paracontact structure on a 

differentiable manifold defined by I. Sato [20, 21]. The 

structure is an analogue of the almost contact structure 

[6, 19] and is closely related to almost product structure 

(in contrast to almost contact structure, which is related 

to almost complex structure). Every differentiable 

manifold with almost paracontact structure defined by I. 

Sato has a compatible Riemannian metric. 

    An almost paracontact structure on a 

pseudo-Riemannian manifold 𝑀  of dimension (2𝑛 + 1) 

defined by S. Kaneyuki and M. Konzai [11] and they 

constructed the almost paracomplex structure on 

𝑀2𝑛+1 × ℝ. Recently, S. Zamkovoy [27] has associated the 

almost paracontact structure given in [11] to a 

pseudo-Riemannian metric of signature (𝑛 + 1, 𝑛)  and 

showed that any almost paracontact structure admits 

such a pseudo-Riemannian metric. 

   As a generalization of the well-known connection 

defined by N. Tanaka [23] and independently by S. M. 

Webster [25], in context of CR-geometry, 

Tanaka-Webster connection was introduced by S. Tanno 

[24]. In a paracontact metric manifold S. Zamkovoy [27] 

defined a canonical connection which plays the same role 

of the (generalized) Tanaka-Webster connection [24] in 

paracontact geometry [2, 3, 4]. In this article, we study a 

canonical paracontact connection on a para-Sasakian 

manifold which seems to be the paracontact analogue of 

the (generalized) Tanaka-Webster connection. 

 

STRUCTURE OF PAPER 

In this paper, we consider the canonical paracontact 

connection on a para-Sasakian manifold and study some 

properties of 𝑄  tensor. This paper is organised as 

follows: we present a brief account of para-Sasakian 

manifold in section 2. The subsequent section 3 is 

devoted to the brief description of the canonical 
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paracontact connection and its properties. In section 4, 

we study the 𝑄  tensor of canonical paracontact 

connection in a para-Sasakian manifold. In section 5, a 

locally 𝑄𝜙 -symmetric para-Sasakian manifold with 

respect to the canonical paracontact connection. In 

section 6, is studied that 𝑄𝜙 -recurrent para-Sasakian 

manifold with respect to the canonical paracontact 

connection. 

2. PRELIMINARIES 

Let 𝑀 be a differentiable manifold of dimension 

2𝑛 + 1. If there exists a triple (𝜙, 𝜉, 𝜂) of a tensor field 𝜙 

of type (1,1), a vector field 𝜉 and a 1-form 𝜂 on 𝑀2𝑛+1 

which satisfies the relations [11]:  

𝜙2 = 𝐼 − 𝜂 ⊗ 𝜉, (2.1) 

𝜂(𝜉) = 1, 𝜙𝜉 = 0, (2.2) 

𝜂 ∘ 𝜙 = 0, 𝑟𝑎𝑛𝑘(𝜙) = 2𝑛, (2.3) 

where 𝐼 denotes the identity transformation, then we say 

the triple (𝜙, 𝜉, 𝜂) is an almost paracontact structure and 

the manifold is an almost paracontact manifold. 

Moreover, the tensor field 𝜙 induces an almost 

paracomplex structure on the paracontact distribution 

𝐷 = 𝑘𝑒𝑟𝜂, i.e, the eigen distributions 𝐷± corresponding 

to the eigenvalues ±1 of 𝜙 are both 𝑛-dimensional. 

If an almost paracontact manifold 𝑀  with an 

almost paracontact structure (𝜙, 𝜉, 𝜂)  admits a 

pseudo-Riemannian metric 𝑔 such that [27]  

𝑔(𝜙𝑋, 𝜙𝑌) = −𝑔(𝑋, 𝑌) + 𝜂(𝑋)𝜂(𝑌), 𝑋, 𝑌 ∈ Γ(𝑇𝑀), (2.4) 

then we say that 𝑀  is an almost paracontact metric 

manifold with an almost paracontact metric structure 

(𝜙, 𝜉, 𝜂, 𝑔) and such metric 𝑔 is called compatible metric. 

Any compatible metric 𝑔  is necessarily of signature 

(𝑛 + 1, 𝑛). 

From (2.4), one can see that [27]  

𝑔(𝑋, 𝜙𝑌) = −𝑔(𝜙𝑋, 𝑌), (2.5) 

𝑔(𝑋, 𝜉) = 𝜂(𝑋), (2.6) 

for any 𝑋, 𝑌 ∈ Γ(𝑇𝑀). 

 

The fundamental 2-form of 𝑀 is defined by  

𝜙(𝑋, 𝑌) = 𝑔(𝑋, 𝜙𝑌). 

An almost paracontact metric structure becomes a 

paracontact metric structure [27]  

if 

𝑔 𝑋, 𝜙𝑌 = 𝑑𝜂 𝑋, 𝑌 , 

for all vector field 𝑋, 𝑌,where 

𝑑𝜂 𝑋, 𝑌 =
1

2
 𝑋𝜂 𝑌 − 𝑌𝜂 𝑋 − 𝜂  𝑋, 𝑌   . 

 

        For a (2n+1) dimensional manifold 𝑀  with the 

structure (𝜙, 𝜉, 𝜂, 𝑔) , one can also construct a local 

orthonormal basis which is called a 𝜙 -basis 

 𝑋𝑖 , 𝜙𝑋𝑖 , 𝜉 , (𝑖 = 1,2, … , 𝑛) [27]. 

       An almost paracontact metric structure (𝜙, 𝜉, 𝜂, 𝑔) on 

𝑀 is a para-sasakian manifold if and only if [27]  

 ∇𝑋𝜙 𝑌 = −𝑔(𝑋, 𝑌)𝜉 + 𝜂(𝑌)𝑋, (2.7) 

for any 𝑋, 𝑌 ∈ Γ(𝑇𝑀) and ∇ is Levi-Civita connection of 

𝑀. 

From (2.7), it can be seen that  

∇𝑋𝜉 = −𝜙𝑋. (2.8) 

A 𝑃-Sasakian manifold satisfying  

 ∇𝑋𝜂 (𝑌) = −𝑔(𝑋, 𝑌) + 𝜂(𝑋)𝜂(𝑌),(2.9) 

is called an special para-Sasakian manifold or briefly a 

𝑆𝑃-Sasakian manifold [1].  

 

Example 2.1 [5]. Let 𝑀 = ℝ2𝑛+1 be the (2𝑛 +

1)-dimensional real number space with  

 𝑥1, 𝑦1 , 𝑥2 , 𝑦2 , ……𝑥𝑛 , 𝑦𝑛 , 𝑧  standard coordinate system. 

Defining  

𝜙
𝜕

𝜕𝑥𝛼

=
𝜕

𝜕𝑦𝛼

, 𝜙
𝜕

𝜕𝑦𝛼

=
𝜕

𝜕𝑥𝛼

, 𝜙
𝜕

𝜕𝑧
= 0, 

𝜉 =
𝜕

𝜕𝑧
, 𝜂 = 𝑑𝑧, 

𝑔 = 𝜂 ⊗ 𝜂 +  

𝑛

𝛼=1

𝑑𝑥𝛼 ⊗ 𝑑𝑥𝛼 −  

𝑛

𝛼=1

𝑑𝑦𝛼 ⊗ 𝑑𝑦𝛼 , 

where 𝛼 = 1,2, … , 𝑛 , then the set (𝑀, 𝜙, 𝜉, 𝜂, 𝑔)  is an 

almost paracontact metric manifold.  

In a para-Sasakian manifold 𝑀, the following relations 

hold [27] :  

 

𝑔(𝑅(𝑋, 𝑌, 𝑍), 𝜉) = 𝜂(𝑅(𝑋, 𝑌, 𝑍)) = 𝑔(𝑋, 𝑍)𝜂(𝑌) −

                                    𝑔(𝑌, 𝑍)𝜂(𝑋), (2.10) 

𝑅(𝑋, 𝑌, 𝜉) = 𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋, (2.11) 

𝑅(𝜉, 𝑋, 𝑌) = −𝑔(𝑋, 𝑌)𝜉 + 𝜂(𝑌)𝑋, (2.12) 

𝑅(𝜉, 𝑋, 𝜉) = 𝑋 − 𝜂(𝑋)𝜉, (2.13) 

𝑆(𝑋, 𝜉) = −2𝑛𝜂(𝑋), (2.14) 

𝑆(𝜙𝑋, 𝜙𝑌) = 𝑆(𝑋, 𝑌) + (𝑛 − 1)𝜂(𝑋)𝜂(𝑌), (2.15) 

for any vector fields 𝑋, 𝑌, 𝑍 ∈ Γ(𝑇𝑀) . Here, 𝑅  is 

Riemannian curvature tensor and 𝑆  is Ricci tensor 

defined by 𝑔(𝑄𝑋, 𝑌) = 𝑆(𝑋, 𝑌) , where 𝑄  is the Ricci 

operator. 

Quasi Einstein manifolds, introduced by M. C. 

Chaki and R. K. Maity [7], are natural generalizations of 

Einstein manifolds. According to them, a non-flat 

Riemannian manifold (𝑀, 𝑔)(𝑛 > 2)  is a quasi-Einstein 



  

 

 
84  International Journal for Modern Trends in Science and Technology 

 

 

manifold [7] if its Ricci tensor 𝑆  of type (0,2)  is not 

identically zero and satisfies the following condition  

𝑆(𝑋, 𝑌) = 𝑎𝑔(𝑋, 𝑌) + 𝑏𝐴(𝑋)𝐴(𝑌), (2.16) 

for all vector fields 𝑋 and 𝑌, where 𝑎 and 𝑏  are scalars 

with 𝑏 ≠ 0. 𝐴 is a non-zero 1-form such that  

𝑔(𝑋, 𝜉) = 𝐴(𝑋), (2.17) 

for all vector fields 𝑋 and 𝜉 being a unit vector. Quasi 

Einstein manifoldshave been studied by several authors 

such as U. C. De and G. C. Ghosh [8], U. C. De and B. K. 

De [9] and U. C. De et. al. [10] and many others. 

 

3.PARA-SASAKIAN MANIFOLDS WITH 

CANONICAL PARACONTACT CONNECTION 

In this section, we give a brief account of 

paracontact connetion and study it on a para-Sasakian 

manifold. 

Now, we consider the connection ∇  defined by 

[24],  

∇ 𝑋𝑌 = ∇𝑋𝑌 + 𝜂(𝑋)𝜙𝑌 − 𝜂(𝑌)∇𝑋𝜉 +  ∇𝑋𝜂 𝑌 ⋅ 𝜉, (3.1) 

where 𝑋, 𝑌 ∈ Γ(𝑇𝑀) and ∇ denotes Levi-Civita connetion 

on 𝑀. 

In view of (2.8) in (3.1), we arrive at  

∇ 𝑋𝑌 = ∇𝑋𝑌 + 𝜂(𝑋)𝜙𝑌 + 𝜂(𝑌)𝜙𝑋 + 𝑔(𝑋, 𝜙𝑌)𝜉. (3.2) 

Definition 3.1 On a para-Sasakian manifold, the 

connetion ∇  given by (3.2) is called a canonical 

paracontact connetion.  

           On a para-Sasakian manifold, canonical 

paracontact connection ∇  has the following properties:  

∇ 𝜂 = 0, ∇ 𝑔 = 0, ∇ 𝜉 = 0, (3.3) 

(∇ 𝑋𝜙)𝑌 =  ∇𝑋𝜙 𝑌 + 𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋. (3.4) 

The curvature tensor 𝑅  of a para-Sasakian manifold 𝑀 

with respect to the canonical paracontact connection ∇  is 

defined by  

 

𝑅 (𝑋, 𝑌, 𝑍) = ∇ 𝑋∇ 𝑌𝑍 − ∇ 𝑌∇ 𝑋𝑍 − ∇ [𝑋 ,𝑌]𝑍. (3.5) 

If we use equation (3.2) in (3.5), we get  

𝑅 (𝑋, 𝑌, 𝑍) = 𝑅(𝑋, 𝑌, 𝑍) + 𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉

+𝜂(𝑌)𝜂(𝑍)𝑋 − 𝜂(𝑋)𝜂(𝑍)𝑌 + 2𝑔(𝑋, 𝜙𝑌)𝜙𝑍

+𝑔(𝑋, 𝜙𝑍)𝜙𝑌 − 𝑔(𝑌, 𝜙𝑍)𝜙𝑋,

 

where 𝑅  and 𝑅  are the curvature tensors of 𝑀  with 

respect to the LeviCivita connetion ∇  and canonical 

paracontact connetion ∇  respectively. 

           Assume that 𝑇 and 𝑇  are curvature tensors of type 

(0,4) defined by  

 

𝑇(𝑋, 𝑌, 𝑍, 𝑊) = 𝑔(𝑅(𝑋, 𝑌, 𝑍), 𝑊), 

 and  

𝑇 (𝑋, 𝑌, 𝑍, 𝑊) = 𝑔(𝑅 (𝑋, 𝑌, 𝑍), 𝑊), 

 respectively. 

Theorem 3.1 In a para-Sasakian manifold the following 

relations hold:  

𝑅 (𝑋, 𝑌, 𝑍) + 𝑅 (𝑌, 𝑍, 𝑋) + 𝑅 (𝑍, 𝑋, 𝑌) = 0, (3.7) 

𝑇 (𝑋, 𝑌, 𝑍, 𝑊) + 𝑇 (𝑌, 𝑋, 𝑍, 𝑊) = 0, (3.8) 

𝑇 (𝑋, 𝑌, 𝑍, 𝑊) + 𝑇 (𝑋, 𝑌, 𝑊, 𝑍) = 0, (3.9) 

𝑇 (𝑋, 𝑌, 𝑍, 𝑊) − 𝑇 (𝑍, 𝑊, 𝑋, 𝑌) = 0. (3.10) 

 

Suppose that 𝐸𝑖 =  𝑒𝑖 , 𝜙𝑒𝑖 , 𝜉 (𝑖 = 1,2, … , 𝑛)  is a local 

orthonormal 𝜙 -basis of a para-Sasakian manifold 𝑀 . 

Then the Ricci tensor 𝑆  and the scalar curvature 𝑟  of 𝑀 

with respect to canonical paracontact connection ∇  are 

defined by  

𝑆  𝑋, 𝑌 =  

𝑛

𝑖=1

𝑔 𝑅  𝑒𝑖 , 𝑋, 𝑌 , 𝑒𝑖 −   

𝑛

𝑖=1

𝑔 𝑅  𝜙𝑒𝑖 , 𝑋, 𝑌 , 𝜙𝑒𝑖  

                    +𝑔(𝑅 (𝜉, 𝑋, 𝑌), 𝜉) (3.11) 

 and  

𝑟 =  

𝑛

𝑗 =1

𝑆  𝑒𝑗 , 𝑒𝑗 −  

𝑛

𝑗 =1

𝑆  𝜙𝑒𝑗 , 𝜙𝑒𝑗 + 𝑆  𝜉, 𝜉 ,         (3.12) 

respectively.  

Theorem 3.2 In a para-Sasakian manifold M, the Ricci 

tensor S  and scalar curvature r  of canonical paracontact 

connection ∇  are defined by  

 

𝑆 (𝑋, 𝑌) = 𝑆(𝑋, 𝑌) − 2𝑔(𝑋, 𝑌) + (2𝑛 + 2)𝜂(𝑋)𝜂(𝑌), (3.13) 

𝑟 = 𝑟 − 2𝑛, (3.14) 

where 𝑆  and 𝑟  denote the Ricci tensor and scalar 

curvature of Levi-Civita connection ∇ , respectively. 

Consequently, 𝑆  is symmetric.  

 

Lemma 1 If M is a para-Sasakian manifold with canonical 

paracontact connection ∇ , then  

𝑔(𝑅 (𝑋, 𝑌, 𝑍), 𝜉) = 𝜂(𝑅 (𝑋, 𝑌, 𝑍)) = 0, (3.15) 

𝑅 (𝑋, 𝑌, 𝜉) = 𝑅 (𝜉, 𝑋, 𝑌) = 𝑅 (𝜉, 𝑋, 𝜉) = 0, (3.16) 

𝑆 (𝑋, 𝜉) = 0, (3.17) 

 for all 𝑋, 𝑌, 𝑍 ∈ Γ(𝑇𝑀).  

 

4. Q TENSOR 

In this section, we consider the 𝑄 tensor of para-Sasakian 

manifold in canonical paracontact connection. 

In 2012, Mantica and Molinari [13, 14] defined a 

generalized (0,2) symmetric 𝑍 tensor expressed as  

𝑍(𝑋, 𝑌) = 𝑆(𝑋, 𝑌) + 𝜓𝑔(𝑋, 𝑌), (4.1) 
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where 𝑆 denotes the Ricci tensor and 𝜓 is an arbitrary 

scalar function. It is referred to the generalized 𝑍 tensor 

simply as the 𝑍 tensor. 

In 2013 , Mantica and Suh [15] introduced a new 

type of tensor whose trace is the 𝑍 tensor. The 𝑄 tensor is 

defined as  

 

𝑄 𝑋, 𝑌, 𝑉 = 𝑅 𝑋, 𝑌, 𝑉 −
𝜓

 𝑛 − 1 
 𝑔 𝑌, 𝑉 𝑋 − 𝑔 𝑋, 𝑉 𝑌 , 

(4.2) 

where 𝑅  denotes the curvature tensor and 𝜓  is an 

arbitrary scalar function. 

The (0,4)𝑄 tensor is expressed as  

𝑄(𝑋, 𝑌, 𝑉, 𝑈) = 𝑅(𝑋, 𝑌, 𝑉, 𝑈) −
𝜓

(𝑛 − 1)
[𝑔(𝑌, 𝑉)𝑔(𝑋, 𝑈)

− 𝑔(𝑋, 𝑉)𝑔(𝑌, 𝑈)]. 

 (4.3) 

If we put 𝜉  for 𝑋, 𝑌  and 𝑉  respectively in the equation 

(4.2), then in view of the equations (2.6), (2.11) and (2.12), 

we get  

𝑄(𝜉, 𝑌, 𝑉) =  1 +
𝜓

(𝑛−1)
 [𝜂(𝑉)𝑌 − 𝑔(𝑌, 𝑉)𝜉], (4.4) 

𝑄(𝑋, 𝜉, 𝑉) =  1 +
𝜓

(𝑛 − 1)
 [𝑔(𝑋, 𝑉)𝜉 − 𝜂(𝑉)𝑋] 

, (4.5) 

 and  

𝑄(𝑋, 𝑌, 𝜉) =  1 +
𝜓

(𝑛 − 1)
 [𝜂(𝑋)𝑌 − 𝜂(𝑌)𝑋]. 

 (4.6) 

Similar to the definition (4.2), we define the 𝑄  tensor of 

paracontact connection ∇  in para-Sasakian manifold by  

𝑄 (𝑋, 𝑌, 𝑉) = 𝑅 (𝑋, 𝑌, 𝑉) −
𝜓

(𝑛 − 1)
[𝑔(𝑌, 𝑉)𝑋 − 𝑔(𝑋, 𝑉)𝑌], 

 (4.7) 

Also, the type (0,4) tensor field 𝑄  is given by  

𝑄 (𝑋, 𝑌, 𝑉, 𝑈) = 𝑅 (𝑋, 𝑌, 𝑉, 𝑈) −
𝜓

(𝑛 − 1)
[𝑔(𝑌, 𝑉)𝑔(𝑋, 𝑈)

− 𝑔(𝑋, 𝑉)𝑔(𝑌, 𝑈)], 

 (4.8) 

 for the arbitrary vector fields 𝑋, 𝑌, 𝑉, 𝑈 

 

With the help of equation (3.6) in (4.7), we get  

 

𝑄 (𝑋, 𝑌, 𝑉) = 𝑅(𝑋, 𝑌, 𝑉) + 𝑔(𝑌, 𝑉)𝜂(𝑋)𝜉 − 𝑔(𝑋, 𝑉)𝜂(𝑌)𝜉 +

𝜂 𝑌 𝜂 𝑉 𝑋 − 𝜂 𝑋 𝜂 𝑉 𝑌 + 2𝑔 𝑋, 𝜙𝑌 𝜙𝑉 +

𝑔 𝑋, 𝜙𝑉 𝜙𝑌 − 𝑔 𝑌, 𝜙𝑉 𝜙𝑋 −

 

𝜓

(𝑛 − 1)
[𝑔(𝑌, 𝑉)𝑋 − 𝑔(𝑋, 𝑉)𝑌]. 

which using the equation (4.2) in the above equation, 

yields  

  

𝑄 (𝑋, 𝑌, 𝑉) = 𝑄(𝑋, 𝑌, 𝑉) + [𝑔(𝑌, 𝑉)𝜂(𝑋) − 𝑔(𝑋, 𝑉)𝜂(𝑌)]𝜉

+ 𝜂 𝑌 𝑋 − 𝜂 𝑋 𝑌 𝜂 𝑉 + 2𝑔 𝑋, 𝜙𝑌 𝜙𝑉

+𝑔 𝑋, 𝜙𝑉 𝜙𝑌 − 𝑔 𝑌, 𝜙𝑉 𝜙𝑋                                                                                                         .

 

−
𝜓

(𝑛−1)
[𝑔(𝑌, 𝑉)𝑋 − 𝑔(𝑋, 𝑉)𝑌 (4.9) 

Now, taking 𝜉 for each of the vector field 𝑋, 𝑌 and 𝑉 in 

the above equation and using equations (2.2), (2.3), (2.6), 

(4.4), (4.5) and (4.6), we get  

𝑄 (𝜉, 𝑌, 𝑉) =
𝜓

(𝑛−1)
[𝜂(𝑉)𝑌 − 𝑔(𝑌, 𝑉)𝜉], (4.10) 

𝑄  𝑋, 𝜉, 𝑉 =
𝜓

 𝑛−1 
 𝑔 𝑋, 𝑉 𝜉 − 𝜂 𝑉 𝑋 , (4.11) 

 and  

𝑄  𝑋, 𝑌, 𝜉 =
𝜓

 𝑛 − 1 
 𝜂 𝑋 𝑌 − 𝜂 𝑌 𝑋 , 

 (4.12) 

Taking inner product with 𝜉 in the equation (4.2) and 

using (2.6), (2.10), we get 

𝜂 𝑄 𝑋, 𝑌, 𝑉  =  1 +
𝜓

 𝑛 − 1 
  𝑔 𝑋, 𝑉 𝜂 𝑌 

− 𝑔 𝑌, 𝑉 𝜂 𝑋  , 

 (4.13) 

Similarly, from the equations (2.2), (2.3), (4.9) and (4.13), 

we obtain  

𝜂(𝑄 (𝑋, 𝑌, 𝑉)) =
𝜓

(𝑛 − 1)
[𝑔(𝑋, 𝑉)𝜂(𝑌) − 𝑔(𝑌, 𝑉)𝜂(𝑋)]. 

 (4.14) 

 

5. LOCALLY 𝑸𝝓-SYMMETRIC PARA-SASAKIAN 

MANIFOLD WITH CANONICAL PARACONTACT 

CONNECTION 

In section 5, a locally 𝑄𝜙 -symmetric 

para-Sasakian manifold with respect to the canonical 

paracontact connection.  

 

Definition 5.1 An (2n + 1)-dimensional para-Sasakian 

manifold M2n+1 is said to be locally Qϕ-symmetric if  

  

𝜙2((∇𝑈𝑄)(𝑋, 𝑌, 𝑉)) = 0, 

 

 for all vector fields 𝑋, 𝑌, 𝑈 and 𝑉.  

 

Definition 5.2 An (2n+1)-dimensional para-Sasakian 

manifold M2n+1 is said to be locally Qϕ-symmetric with 

respect to the canonical paracontact connection if  

  

𝜙2   ∇ 𝑈𝑄   𝑋, 𝑌, 𝑉  = 0, 
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for all vector fields 𝑋, 𝑌, 𝑈 and 𝑉 orthogonal to 𝜉, where 

𝑄  is the Q-tensor of the canonical paracontact connection 

∇ .  

Theorem 5.1 A para-Sasakian manifold is locally 

Qϕ-symmetric with respect to the canonical paracontact 

connection ∇  if and only if it is so with respect to the 

Levi-Civita connection ∇.  

Proof. From equation (3.2), we have  

 

(∇ UQ )(X, Y, V) = (∇U Q )(X, Y, V) + η(U)ϕQ (X, Y, V) 

+η(Q (X, Y, V))ϕU + g(U, ϕQ (X, Y, V))ξ. 

 

(5.1) 

Now, differentiating equation (4.9) covariantly with 

respect to 𝑈, we get 

 

(∇𝑈𝑄 )(𝑋, 𝑌, 𝑉) = (∇𝑈𝑄)(𝑋, 𝑌, 𝑉) + 2𝑔(𝑋, 𝜙𝑌)(∇𝑈𝜙)(𝑉)  

− 𝜂 𝑋  ∇𝑈𝜂  𝑉 𝑌 − 𝜂 𝑉  ∇𝑈𝜂  𝑋 𝑌   

    +𝑔 𝑋, 𝜙𝑉  ∇𝑈𝜙  𝑌 − 𝑔 𝑌, 𝜙𝑉  ∇𝑈𝜙  𝑋  

+ 𝑔 𝑌, 𝑉  ∇𝑈𝜂  𝑋 − 𝑔 𝑋, 𝑉  ∇𝑈𝜂  𝑌  𝜉 

+ 𝜂 𝑌  ∇𝑈𝜂  𝑉 𝑋 + 𝜂 𝑉  ∇𝑈𝜂  𝑌 𝑋 , 

                                 (5.2) 

In the above equation using (2.1), (2.2), (2.6), (2.9), (2.10), 

(4.2), (4.9), (4.14) , we get  

 

(∇ 𝑈𝑄 )(𝑋, 𝑌, 𝑉)) = (∇𝑈𝑄)(𝑋, 𝑌, 𝑉) − 𝑔(𝑌, 𝑉)𝑔(𝑋, 𝑈)𝜉 +

𝑔(𝑋, 𝑉)𝑔(𝑌, 𝑈)𝜉 + 𝑔(𝑌, 𝑉)𝜂(𝑋)𝜂(𝑈)𝜉 −

𝑔(𝑋, 𝑉)𝜂(𝑌)𝜂(𝑈)𝜉 − 𝜂(𝑌)𝑔(𝑈, 𝑉)𝑋 + 2𝜂(𝑌)𝜂(𝑈)𝜂(𝑉)𝑋 −

𝜂(𝑉)𝑔(𝑌, 𝑈)𝑋 + 𝜂(𝑋)𝑔(𝑉, 𝑈)𝑌 − 2𝜂(𝑋)𝜂(𝑈)𝜂(𝑉)𝑌 +

𝜂(𝑉)𝑔(𝑋, 𝑈)𝑌 + 2𝑔(𝑋, 𝜙𝑌)𝜂(𝑉)𝑈 − 2𝑔(𝑋, 𝜙𝑌)𝑔(𝑈, 𝑉)𝜉 +

𝑔(𝑌, 𝜙𝑉)𝑔(𝑈, 𝑋)𝜉 − 𝑔(𝑌, 𝜙𝑉)𝜂(𝑋)𝑈 + 𝑔(𝑋, 𝑉)𝜂(𝑈)𝜙𝑌 +

𝑔(𝑋, 𝜙𝑉)𝜂(𝑌)𝑈 − 𝑔(𝑋, 𝜙𝑉)𝑔(𝑈, 𝑌)𝜉 + 𝑔(𝑌, 𝑉)𝜂(𝑈)𝜙𝑋 +

𝜂(𝑌)𝜂(𝑈)𝜂(𝑉)𝜙𝑋 − 𝜂(𝑋)𝜂(𝑈)𝜂(𝑉)𝜙𝑌 + 2𝑔(𝑋, 𝜙𝑌)𝜂(𝑈) +

𝑔(𝑋, 𝜙𝑉)𝜂(𝑈)𝑌 − 𝑔(𝑋, 𝜙𝑉)𝜂(𝑈)𝜂(𝑌)𝜉 − 𝑔(𝑌, 𝜙𝑉)𝜂(𝑈)𝑋 +

𝑔(𝑌, 𝜙𝑉)𝜂(𝑈)𝜂(𝑋)𝜉 + 𝑔(𝑋, 𝑉)𝑔(𝑈, 𝜙𝑌)𝜉 −

𝑔(𝑌, 𝑉)𝑔(𝑈, 𝜙𝑋)𝜉 + 𝑔(𝑈, 𝜙𝑋)𝜂(𝑌)𝜂(𝑉)𝜉 −

𝑔(𝑈, 𝜙𝑌)𝜂(𝑋)𝜂(𝑉)𝜉 + 2𝑔(𝑋, 𝜙𝑌)𝑔(𝑈, 𝑉)𝜉 −

2𝑔(𝑋, 𝜙𝑌)𝜂(𝑈)𝜂(𝑉)𝜉 + 2𝑔(𝑋, 𝜙𝑉)𝑔(𝑈, 𝑌)𝜉 −

2𝑔(𝑋, 𝜙𝑉)𝜂(𝑌)𝜂(𝑈)𝜉 − 2𝑔(𝑋, 𝜙𝑌)𝜂(𝑈)𝜂(𝑉)𝜉 −

𝑔(𝑌, 𝜙𝑉)𝑔(𝑈, 𝑋)𝜉 + 𝑔(𝑌, 𝜙𝑉)𝜂(𝑋)𝜂(𝑈)𝜉 −
𝜓

 𝑛−1 
{𝑔(𝑌, 𝑉)𝜙𝑋 + 𝑔(𝑋, 𝑉)𝜙𝑌}𝜂(𝑈) +

𝜓

 𝑛−1 
{𝑔(𝑋, 𝑉)𝜂(𝑌) −

𝑔(𝑌, 𝑉)𝜂(𝑋)}𝜙𝑈 −
𝜓

 𝑛−1 
{𝑔(𝑌, 𝑉)𝑔(𝑈, 𝜙𝑋) +

𝑔(𝑋, 𝑉)𝑔(𝑈, 𝜙𝑌)}𝜉, 

      (5.3) 

Applying 𝜙2 on both sides of the above equation and 

using equations (2.1), (2.2), we get  

 

𝜙2((∇ 𝑈𝑄 )(𝑋, 𝑌, 𝑉) = 𝜙2( ∇𝑈𝑄  𝑋, 𝑌, 𝑉 − 𝜂 𝑌 𝑔 𝑈, 𝑉 𝑋 +

𝜂 𝑋 𝜂 𝑌 𝑔 𝑈, 𝑉 𝜉 + 2𝜂 𝑈 𝜂 𝑌 𝜂 𝑉 𝑋 −

2𝜂 𝑈 𝜂 𝑌 𝜂 𝑉 𝜂 𝑋 𝜉 − 𝜂 𝑉 𝑔 𝑈, 𝑌 𝑋 +

𝜂 𝑉 𝑔 𝑈, 𝑌 𝜂 𝑋 𝜉 + 𝜂 𝑋 𝑔 𝑈, 𝑉 𝑌 − 2𝜂 𝑋 𝜂 𝑈 𝜂 𝑉 𝑌 +

2𝜂 𝑋 𝜂 𝑈 𝜂 𝑉 𝜂 𝑌 𝜉 + 𝜂 𝑉 𝑔 𝑈, 𝑋 𝑌 −

𝜂 𝑉 𝑔 𝑈, 𝑋 𝜂 𝑌 𝜉 + 2𝑔(𝑋, 𝜙𝑌)𝜂(𝑉)𝑈 −

2𝑔(𝑋, 𝜙𝑌)𝜂(𝑉)𝜂(𝑈)𝜉 + 𝑔(𝑋, 𝜙𝑉)𝜂(𝑌)𝑈 −

𝑔(𝑋, 𝜙𝑉)𝜂(𝑌)𝜂(𝑈)𝜉 − 𝑔 𝑌, 𝜙𝑉 𝜂 𝑋 𝑈 +

𝑔 𝑌, 𝜙𝑉 𝜂 𝑋 𝜂 𝑈 𝜉 + 𝑔 𝑋, 𝑉 𝜂 𝑈 𝜙𝑌 + 𝑔 𝑌, 𝑉 𝜂 𝑈 𝜙𝑋 +

𝜂 𝑈 𝜂 𝑌 𝜂 𝑉 𝜙𝑋 − 𝜂 𝑈 𝜂 𝑋 𝜂 𝑉 𝜙𝑌 +

2𝑔 𝑋, 𝜙𝑌 𝜂 𝑈 𝑉 − 2𝑔 𝑋, 𝜙𝑌 𝜂 𝑈 𝜂 𝑉 𝜉 +

𝑔 𝑋, 𝜙𝑉 𝜂 𝑈 𝑌 − 𝑔 𝑋, 𝜙𝑉 𝜂 𝑈 𝜂 𝑌 𝜉 − 𝑔 𝑌, 𝜙𝑉 𝜂 𝑈 𝑋 +

𝑔 𝑌, 𝜙𝑉 𝜂 𝑈 𝜂 𝑋 𝜉 − 𝜂 𝑋 𝑔 𝑈, 𝑉 𝜂 𝑌 𝜉 +
𝜓

 𝑛−1 
 𝑔 𝑋, 𝑉 𝜙𝑌 − 𝑔 𝑌, 𝑉 𝜙𝑋 𝜂 𝑈 +

𝜓

 𝑛−1 
{𝑔 𝑋, 𝑉 𝜂 𝑌 −

𝑔 𝑌, 𝑉 𝜂 𝑋 }𝜙𝑈, 

 

Now if 𝑋, 𝑌, 𝑈, 𝑉  are orthogonal to 𝜉 , then the above 

equation reduces to  

  

𝜙2((∇ 𝑈𝑄 )(𝑋, 𝑌, 𝑉)) = 𝜙2  ∇𝑈𝑄 (𝑋, 𝑌, 𝑉) , 

 This completes the proof.  

 

𝟔.  𝑸𝝓-RECURRENT PARA-SASAKIAN MANIFOLD 

WITH CANONICAL PARACONTACT 

CONNECTION 

In section 6, is studied that 𝑄𝜙 -recurrent 

para-Sasakian manifold with respect to the canonical 

paracontact connection.  

Definition 6.1 An (2n+1)-dimensional para-Sasakian 

manifold M2n+1 is said to be Qϕ-recurrent if  

ϕ2  ∇UQ (X, Y, V) = A(U)Q(X, Y, V), 

 for the arbitrary vector fields X, Y, U and V, where A is a 

non zero 1-form.  

Definition 6.2 An (2n+1)-dimensional para-Sasakian 

manifold M2n+1 is said to be Qϕ-recurrent with respect to 

the canonical paracontact connection if  

ϕ2(∇ U Q )(X, Y, V) = A(U)Q (X, Y, V), (6.1) 

 

 for arbitrary vector fields X, Y, U and V.  

 

Theorem 6.1 A Qϕ-recurrent para-Sasakian manifold 

with respect to a canonical paracontact connection is a 

quasi Einstein manifold.  

 

Proof. From equations (2.1) and (6.1) , we have  

(∇ 𝑈𝑄 )(𝑋, 𝑌, 𝑉) − 𝜂((∇ 𝑈𝑄 )(𝑋, 𝑌, 𝑉))𝜉 = 𝐴(𝑈)𝑄 (𝑋, 𝑌, 𝑉), 

 which reduces to  

𝑔   ∇ 𝑈𝑄   𝑋, 𝑌, 𝑉 , 𝑊 − 𝜂   ∇ 𝑈𝑄   𝑋, 𝑌, 𝑉  𝜂 𝑊   

= 𝐴(𝑈)𝑔(𝑄 (𝑋, 𝑌, 𝑉), 𝑊). 
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 Using equations (2.2), (2.3), (2.6), (4.9) and (5.3) in the 

above equation, we get  

 

𝑔((∇𝑈𝑄)(𝑋, 𝑌, 𝑉), 𝑊) − 𝜂(𝑌)𝑔(𝑈, 𝑉)𝑔(𝑋, 𝑊) +

2𝑔(𝑋, 𝑊)𝜂(𝑉)𝜂(𝑈)𝜂(𝑌) − 𝑔(𝑋, 𝑊)𝑔(𝑈, 𝑌)𝜂(𝑉) +

𝑔(𝑈, 𝑉)𝑔(𝑌, 𝑊)𝜂(𝑋) − 2𝑔(𝑌, 𝑊)𝜂(𝑉)𝜂(𝑈)𝜂(𝑋) +

𝑔(𝑌, 𝑊)𝑔(𝑈, 𝑋)𝜂(𝑉) + 2𝑔(𝑋, 𝜙𝑌)𝑔(𝑈, 𝑊)𝜂(𝑉) +

𝑔(𝑋, 𝜙𝑉)𝑔(𝑈, 𝑊)𝜂(𝑌) − 𝑔(𝑌, 𝜙𝑉)𝑔(𝑈, 𝑊)𝜂(𝑋) +

𝑔(𝑋, 𝑉)𝑔(𝜙𝑌, 𝑊)𝜂(𝑈) + 𝑔(𝑌, 𝑉)𝑔(𝜙𝑋, 𝑊)𝜂(𝑈) +

𝑔(𝜙𝑋, 𝑊)𝜂(𝑈)𝜂(𝑌)𝜂(𝑉) − 𝑔(𝜙𝑌, 𝑊)𝜂(𝑈)𝜂(𝑋)𝜂(𝑉) +

2𝑔(𝑋, 𝜙𝑌)𝑔(𝑉, 𝑊)𝜂(𝑈) − 4𝑔(𝑋, 𝜙𝑌)𝜂(𝑈)𝜂(𝑊)𝜂(𝑉) +

𝑔(𝑋, 𝜙𝑉)𝑔(𝑌, 𝑊)𝜂(𝑈) − 𝑔(𝑌, 𝜙𝑉)𝑔(𝑋, 𝑊)𝜂(𝑈) −

3𝑔(𝑋, 𝜙𝑉)𝜂(𝑈)𝜂(𝑊)𝜂(𝑌) + 2𝑔(𝑌, 𝜙𝑉)𝜂(𝑈)𝜂(𝑊)𝜂(𝑋) −

𝜂 ∇𝑈𝑄 (𝑋, 𝑌, 𝑉)𝜂(𝑊) + 𝑔(𝑌, 𝑈)𝜂(𝑉)𝜂(𝑊)𝜂(𝑋) −

𝑔(𝑋, 𝑈)𝜂(𝑉)𝜂(𝑊)𝜂(𝑌) −
𝜓

 𝑛−1 
𝑔 𝑌, 𝑉  𝑔 𝜙𝑋, 𝑊 𝜂 𝑈 +

𝑔𝜙𝑈,𝑊𝜂𝑋+𝜓𝑛−1𝑔𝑋,𝑉{𝑔𝜙𝑌,𝑊𝜂𝑈+𝑔𝜙𝑈,𝑊𝜂𝑌}=𝐴(𝑈)𝑔(𝑄(𝑋

, 𝑌, 𝑉), 𝑊) + 𝐴(𝑈)𝑔(𝑌, 𝑉)𝜂(𝑊)𝜂(𝑋) −

𝐴(𝑈)𝑔(𝑋, 𝑉)𝜂(𝑊)𝜂(𝑌) + 𝐴(𝑈)𝑔(𝑋, 𝑊)𝜂(𝑉)𝜂(𝑌) −

𝐴(𝑈)𝑔(𝑌, 𝑊)𝜂(𝑉)𝜂(𝑋) + 2𝐴(𝑈)𝑔(𝑋, 𝜙𝑌)𝑔(𝜙𝑉, 𝑊) +

𝐴(𝑈)𝑔(𝑋, 𝜙𝑉)𝑔(𝜙𝑌, 𝑊) − 𝐴(𝑈)𝑔(𝑌, 𝜙𝑉)𝑔(𝜙𝑋, 𝑊), 

 

Again using equations (2.9) and (4.2), we get 

 

2𝑔 𝑋, 𝑊 𝜂 𝑉 𝜂 𝑈 𝜂 𝑌 

− 𝑔 𝑋, 𝑊  𝑔 𝑈, 𝑉 𝜂 𝑌 + 𝑔 𝑈, 𝑌 𝜂 𝑉  

+ 𝑔 𝑌, 𝑊 𝑔 𝑈, 𝑉 𝜂 𝑋 − 𝑔 𝑌, 𝑊 𝜂 𝑈 𝜂 𝑋 𝜂 𝑉 

+ 𝑔 𝑌, 𝑊 𝑔 𝑈, 𝑋 𝜂 𝑉 − 𝑔 𝑌, 𝑊 𝜂 𝑈 𝜂 𝑋 𝜂 𝑉 

+ 2𝑔 𝑋, 𝜙𝑌 𝑔 𝑈, 𝑊 𝜂 𝑉 + 2𝑔 𝑋, 𝜙𝑉 𝑔 𝑈, 𝑊 𝜂 𝑌 

− 𝑔 𝑌, 𝜙𝑉 𝑔 𝑈, 𝑊 𝜂 𝑋 + 𝑔 𝑋, 𝑉 𝑔 𝜙𝑌, 𝑊 𝜂 𝑈 

+ 𝑔 𝑌, 𝑉 𝑔 𝜙𝑋, 𝑊 𝜂 𝑈 + 𝑔 𝜙𝑋, 𝑊 𝜂 𝑈 𝜂 𝑌 𝜂 𝑉 

− 𝑔 𝜙𝑌, 𝑊 𝜂 𝑈 𝜂 𝑋 𝜂 𝑉 + 2𝑔 𝑋, 𝜙𝑌 𝑔 𝑉, 𝑊 𝜂 𝑈 

− 4𝑔 𝑋, 𝜙𝑌 𝜂 𝑈 𝜂 𝑊 𝜂 𝑉 + 𝑔 𝑋, 𝜙𝑉 𝑔 𝑌, 𝑊 𝜂 𝑈 

− 𝑔 𝑌, 𝜙𝑉 𝑔 𝑋, 𝑊 𝜂 𝑈 − 3𝑔 𝑋, 𝜙𝑉 𝜂 𝑈 𝜂 𝑌 𝜂 𝑊 

+ 2𝑔 𝑌, 𝜙𝑉 𝜂 𝑈 𝜂 𝑋 𝜂 𝑊 + 𝑔 𝑈, 𝑌 𝜂 𝑉 𝜂 𝑋 𝜂 𝑊 

− 𝑔 𝑈, 𝑋 𝜂 𝑉 𝜂 𝑌 𝜂 𝑊 + 𝑔  ∇𝑈𝑅  𝑋, 𝑌, 𝑉 , 𝑊 

− 𝜂  ∇𝑈𝑅  𝑋, 𝑌, 𝑉  𝜂 𝑊 

−
𝜓

 𝑛 − 1 
 𝑔 𝑌, 𝑉 𝑔 𝜙𝑋, 𝑊 − 𝑔 𝑋, 𝑉 𝑔 𝜙𝑌, 𝑊  𝜂 𝑈 

+
𝜓

 𝑛 − 1 
 𝑔 𝑌, 𝑉  ∇𝑈𝜂  𝑋 𝜂 𝑊   −𝑔 𝑋, 𝑉  ∇𝑈𝜂  𝑌 𝜂 𝑊  

−
𝜓

 𝑛 − 1 
 𝑔 𝑌, 𝑉 𝑔 ∇𝑈𝑋, 𝑊 − 𝑔 𝑋, 𝑉 𝑔 ∇𝑈𝑌, 𝑊  

= 𝐴 𝑈 𝑔 𝑅 𝑋, 𝑌, 𝑉 , 𝑊 + 𝐴 𝑈 𝑔 𝑌, 𝑉 𝜂 𝑋 𝜂 𝑊 

− 𝐴 𝑈 𝑔 𝑋, 𝑉 𝜂 𝑌 𝜂 𝑊 + 𝐴 𝑈 𝑔 𝑋, 𝑊 𝜂 𝑌 𝜂 𝑉 

− 𝐴 𝑈 𝑔 𝑌, 𝑊 𝜂 𝑋 𝜂 𝑉 + 2𝐴 𝑈 𝑔 𝑋, 𝜙𝑌 𝑔 𝜙𝑉, 𝑊 

+ 𝐴 𝑈 𝑔 𝑋, 𝜙𝑉 𝑔 𝜙𝑌, 𝑊 − 𝐴 𝑈 𝑔 𝑌, 𝜙𝑉 𝑔 𝜙𝑋, 𝑊 

−
𝜓

 𝑛 − 1 
 𝐴 𝑈 𝑔 𝑌, 𝑉 𝑔 𝑋, 𝑊 − 𝐴 𝑈 𝑔 𝑋, 𝑉 𝑔 𝑌, 𝑊  , 

 

Let  𝑒𝑖 , 𝑖 = 1,2, … ,2n  be an orthonormal basis of the 

tangent space at every point of the manifold. Then 

putting 𝑋 = 𝑊 = 𝑒𝑖  in the above equation and taking 

summation over  𝑒𝑖 , 𝜙𝑒𝑖 , 𝜉 , 1 ≤ 𝑖 ≤ 2𝑛, we get  

 

(∇𝑈𝑆)(𝑌, 𝑉) − 𝜂((∇𝑈𝑅)(𝑒𝑖 , 𝑌, 𝑉))𝜂(𝑒𝑖) + 4𝑛𝜂(𝑌)𝜂(𝑉)𝜂(𝑈)  

− 2𝑛𝑔(𝑈, 𝑉)𝜂(𝑌) − 2𝑛𝑔(𝑈, 𝑌)𝜂(𝑉)

+ 𝑔(𝑈, 𝑉)𝜂(𝑌) − 2𝜂(𝑌)𝜂(𝑉)𝜂(𝑈)

− 2𝑛𝑔(𝑌, 𝜙𝑉)𝜂(𝑈)

+ 𝑔(𝑈, 𝑌)𝜂(𝑉)𝑔(𝜙𝑌, 𝑉)𝜂(𝑈)

+ 2𝑔(𝑉, 𝜙𝑌)𝜂(𝑈) − 𝜂(𝑌)𝜂(𝑉)𝜂(𝑈)

+ 𝑔(𝑌, 𝑈)𝜂(𝑉)  + 2𝑔(𝑌, 𝜙𝑉)𝜂(𝑈)

+
𝜓

(𝑛 − 1)
𝑔(𝜙𝑈, 𝑉)𝜂(𝑌)  

+
𝜓

(𝑛 − 1)
[𝑔(𝑈, 𝑌)𝜂(𝑉) − 𝜂(𝑌)𝜂(𝑉)𝜂(𝑈)]  

= 𝐴(𝑈)𝑆(𝑌, 𝑉)  + 𝑔(𝑉, 𝑌)𝐴(𝑈)  

− 𝐴(𝑈)𝜂(𝑌)𝜂(𝑉) + 2𝑛𝐴(𝑈)𝜂(𝑌)𝜂(𝑉)  

− 𝐴 𝑈 𝜂 𝑌 𝜂 𝑉 

−
𝜓

(𝑛 − 1)
[2𝑛𝑔(𝑉, 𝑌)𝐴(𝑈)

− 𝑔(𝑉, 𝑌)𝐴(𝑈)]  + 3𝐴 𝑈 𝑔 𝜙𝑌, 𝜙𝑉 , 

 

Putting 𝑉 = 𝜉 in the above equation and using equations 

(2.2), (2.4), (2.6), (2.14), yields  

 

(∇𝑈𝑆)(𝑌, 𝜉) − 𝜂((∇𝑈𝑅)(𝑒𝑖 , 𝑌, 𝜉))𝜂(𝑒𝑖)

+
𝜓

(𝑛 − 1)
[𝑔(𝑈, 𝑌) − 𝜂(𝑌)𝜂(𝑈)] + (2𝑛 − 2)𝜂(𝑌)𝜂(𝑈)

−(2𝑛 − 2)𝑔(𝑈, 𝑌) +
𝜓

(𝑛 − 1)
(2𝑛 − 1)𝜂(𝑌)𝐴(𝑈) = 0.

 

 (6.2) 

The second term on L.H.S. of equation (6.2) takes the 

form  

𝐸 = 𝜂  ∇𝑈𝑅  𝑒𝑖 , 𝑌, 𝜉  𝜂 𝑒𝑖  

= 𝑔  ∇𝑈𝑅  𝑒𝑖 , 𝑌, 𝜉 , 𝜉 )𝑔 𝑒𝑖 , 𝜉 , 

 which is denoted by 𝜆. In this case 𝜆 vanishes. Namely, 

we have  

 

𝑔  ∇𝑈𝑅  𝑒𝑖 , 𝑌, 𝜉 , 𝜉 = 𝑔 ∇𝑈𝑅 𝑒𝑖 , 𝑌, 𝜉 , 𝜉 − 𝑔 𝑅 ∇𝑈𝑒𝑖 , 𝑌, 𝜉 , 𝜉 
         

− 𝑔 𝑅 𝑒𝑖 , ∇𝑈𝑌, 𝜉 , 𝜉 − 𝑔 𝑅 𝑒𝑖 , 𝑌, ∇𝑈𝜉 , 𝜉  

 

                                                                                      (6.3) 

at p ∈ 𝑀2𝑛+1. In the local coordinates ∇𝑈𝑒𝑖 = 𝑈𝑗 Γ𝑗𝑖
ℎ 𝑒ℎ , 

where Γ𝑗𝑖
ℎ  are the Christoffel symbols. Since  𝑒𝑖  is an 

orthonormal basis, the metric tensor 𝑔𝑖𝑗 = 𝛿𝑖𝑗 , where 𝛿𝑖𝑗  

is the Kronecker delta and hence the Christoffel symbols 

are zero. Therefore ∇𝑈𝑒𝑖 = 0. 

Also, we have  



  

 

 
88  International Journal for Modern Trends in Science and Technology 

 

 

𝑔 𝑅 𝑒𝑖 , ∇𝑈𝑌, 𝜉 , 𝜉 = 0, (6.4) 

Since 𝑅 is the skew symmetric. Using equation (6.4) and 

∇𝑈𝑒𝑖 = 0 in equation (6.3), we get 

𝑔  ∇𝑈𝑅  𝑒𝑖 , 𝑌, 𝜉 , 𝜉 

= 𝑔 ∇𝑈𝑅 𝑒𝑖 , 𝑌, 𝜉 , 𝜉 

−                                                          𝑔 𝑅 𝑒𝑖 , 𝑌, ∇𝑈𝜉 , 𝜉 . 

In view of 𝑔 𝑅 𝑒𝑖 , 𝑌, 𝜉 , 𝜉 = −𝑔 𝑅(𝜉, 𝜉, 𝑌), 𝑒𝑖 = 0  and 

∇𝑈𝑔 = 0, we have  

𝑔 ∇𝑈𝑅 𝑒𝑖 , 𝑌, 𝜉 , 𝜉 + 𝑔 𝑅 𝑒𝑖 , 𝑌, 𝜉 , ∇𝑈𝜉 = 0, 

 

which implies 

𝑔  ∇𝑈𝑅  𝑒𝑖 , 𝑌, 𝜉 , 𝜉 

= −𝑔 𝑅 𝑒𝑖 , 𝑌, 𝜉 , ∇𝑈𝜉 

−                                                  𝑔 𝑅 𝑒𝑖 , 𝑌, ∇𝑈𝜉 , 𝜉 . 

 

Since 𝑅 is skew symmetric, we have 

𝑔  ∇𝑈𝑅  𝑒𝑖 , 𝑌, 𝜉 , 𝜉 = 0. (6.5) 

 

Using equation (6.5) in equation (6.2), we get 

 ∇𝑈𝑆 (𝑌, 𝜉) = −
𝜓

 𝑛 − 1 
[𝑔(𝑌, 𝑈) − 𝜂 𝑌 𝜂 𝑈 + (2𝑛

−   1)𝜂(𝑌)𝐴(𝑈)] − (2𝑛 − 2)𝜂(𝑌)𝜂(𝑈)

+ (2𝑛 − 2)𝑔(𝑌, 𝑈). 

 

Now, we have  

  

 ∇𝑈𝑆 (𝑌, 𝜉) = ∇𝑈𝑆(𝑌, 𝜉) − 𝑆 ∇𝑈𝑌, 𝜉 − 𝑆 𝑌, ∇𝑈𝜉 , 

 

which on using equations (2.1), (2.3), (2.9) and (2.14) 

takes the form  

  

 ∇𝑈𝑆 (𝑌, 𝜉) = 2𝑛𝑔(𝑈, 𝑌) + 𝑆(𝑈, 𝑌). 

 (6.7) 

From equations (6.6) and (6.7), we have 

 

𝑆(𝑌, 𝑈) = −
𝜓

(𝑛 − 1)
[𝑔(𝑌, 𝑈) − 𝜂(𝑌)𝜂(𝑈) + (2𝑛 − 1)𝜂(𝑌)𝐴(𝑈)]

−(2𝑛 − 2)𝜂(𝑌)𝜂(𝑈) − 2𝑔(𝑌, 𝑈),

 

 

Replacing 𝑌  and 𝑈  by 𝜙𝑌  and 𝜙𝑈  respectively in the 

above equation and using equations (2.3), (2.4), (2.15), we 

get 

 

𝑆(𝑌, 𝑈) =  
𝜓 + 2𝑛 − 2

𝑛 − 1
 𝑔(𝑈, 𝑌) −  

𝜓 + 𝑛2 − 1

𝑛 − 1
 𝜂(𝑈)𝜂(𝑌), 

 

which shows that it is a quasi Einstein manifold.  

 

Theorem 6.2 In a Qϕ-recurrent para-Sasakian manifold 

M2n+1 admitting canonical paracontact connection, the 

characteristic vector field ξ and the vector field ρ 

associated with 1 -form A are co-directional and the 

1-form A is given by  

  

𝐴(𝑈) = 𝜂(𝜌)𝜂(𝑈). 

 

Proof. By virtue of equations (2.1) and (6.1), we have  

  

(∇ 𝑈𝑄 )(𝑋, 𝑌, 𝑉) = 𝜂((∇ 𝑈𝑄 )(𝑋, 𝑌, 𝑉))𝜉 + 𝐴(𝑈)𝑄 (𝑋, 𝑌, 𝑉). 

 

Using equations (2.2), (2.3), (4.9) and (5.3) in the above 

equation, we get 

 

 ∇𝑈𝑄  𝑋, 𝑌, 𝑉 − 𝜂 𝑌 𝑔 𝑈, 𝑉 𝑋 ∇𝑈𝑄  𝑋, 𝑌, 𝑉 

− 𝜂 𝑌 𝑔 𝑈, 𝑉 𝑋 ∇𝑈𝑄  𝑋, 𝑌, 𝑉 

− 𝜂 𝑌 𝑔 𝑈, 𝑉 𝑋 ∇𝑈𝑄  𝑋, 𝑌, 𝑉 

− 𝜂 𝑌 𝑔 𝑈, 𝑉 𝑋 + 𝜂 𝑉 𝑔 𝑋, 𝑈 𝑌

+ 2𝑔 𝑋, 𝜙𝑌 𝜂 𝑉 𝑈 − 2𝑔 𝑋, 𝜙𝑌 𝑔 𝑈, 𝑉 𝜉

+ 𝑔 𝑋, 𝜙𝑉 𝜂 𝑌 𝑈 − 𝑔 𝑋, 𝜙𝑉 𝑔 𝑌, 𝑈 𝜉

+ 𝑔 𝑌, 𝜙𝑉 𝑔 𝑈, 𝑋 𝜉 − 𝑔 𝑌, 𝜙𝑉 𝜂 𝑋 𝑈

+ 𝑔 𝑋, 𝑉 𝜂 𝑈 𝜙𝑌 + 𝑔 𝑌, 𝑉 𝜂 𝑈 𝜙𝑋

−
𝜓

 𝑛 − 1 
𝑔 𝑌, 𝑈 𝜂 𝑉 𝜙𝑋

+
𝜓

 𝑛 − 1 
𝑔 𝑋, 𝑉 𝜂 𝑈 𝜙𝑌

− 2𝑔(𝑋, 𝜙𝑌)𝜂(𝑈)𝜂(𝑉)𝜉

+ 2𝑔(𝑋, 𝜙𝑉)𝜂(𝑈)𝑌 − 𝑔(𝑋, 𝜙𝑉)𝜂(𝑈)𝜂(𝑌)𝜉

− 𝑔(𝑌, 𝜙𝑉)𝜂(𝑈)𝑋

+
𝜓

(𝑛 − 1)
𝑔(𝑋, 𝑉)𝜂(𝑌)𝜙𝑈

−
𝜓

(𝑛 − 1)
𝑔(𝑌, 𝑉)𝜂(𝑋)𝜙𝑈

= 𝜂  ∇𝑈𝑄 (𝑋, 𝑌, 𝑉) 𝜉

− 𝜂(𝑌)𝜂(𝑋)𝑔(𝑉, 𝑈)𝜉 − 𝜂 𝑋 𝜂 𝑉 𝑔 𝑌, 𝑈 𝜉

+ 𝜂 𝑋 𝜂 𝑌 𝑔 𝑉, 𝑈 𝜉 + 𝜂(𝑉)𝜂(𝑌)𝑔(𝑋, 𝑈)𝜉

+ 2𝑔(𝑋, 𝜙𝑌)𝜂(𝑉)𝜂(𝑈)𝜉

− 2𝑔(𝑋, 𝜙𝑌)𝑔(𝑉, 𝑈)𝜉

+ 𝑔(𝑋, 𝜙𝑉)𝜂(𝑌)𝜂(𝑈)𝜉

− 𝑔(𝑋, 𝜙𝑉)𝑔(𝑌, 𝑈)𝜉 + 𝑔(𝑌, 𝜙𝑉)𝑔(𝑋, 𝑈)𝜉

− 𝑔(𝑌, 𝜙𝑉)𝜂(𝑋)𝜂(𝑈)𝜉

+ 2𝑔(𝑋, 𝜙𝑉)𝜂(𝑌)𝜂(𝑈)𝜉

− 𝑔(𝑋, 𝜙𝑉)𝜂(𝑌)𝜂(𝑈)𝜉

− 𝑔(𝑌, 𝜙𝑉)𝜂(𝑋)𝜂(𝑈)𝜉 + 𝐴(𝑈)𝑄(𝑋, 𝑌, 𝑉)

+ [𝑔(𝑌, 𝑉)𝜂(𝑋) − 𝑔(𝑋, 𝑉)𝜂(𝑌)]𝐴(𝑈)𝜉

+ [𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌]𝜂(𝑉)𝐴(𝑈)

+ 2𝑔(𝑋, 𝜙𝑌)𝐴(𝑈)𝜙𝑉 + 𝑔(𝑋, 𝜙𝑉)𝐴(𝑈)𝜙𝑌

− 𝑔(𝑌, 𝜙𝑉)𝐴(𝑈)𝜙𝑋, 
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Taking the inner product of the above equation with 𝜉 

and using equation (2.2), (4.13), we get 

 

𝐴(𝑈)[1  +
𝜓

(𝑛 − 1)
 [𝑔(𝑋, 𝑉)𝜂(𝑌) − 𝑔(𝑌, 𝑉)𝜂(𝑋)]

+ 𝐴(𝑈)[𝑔(𝑌, 𝑉)𝜂(𝑋) − 𝑔(𝑋, 𝑉)𝜂(𝑌)] = 0. 

 

Writing two more equations by the cyclic permutation of 

𝑈, 𝑋 and 𝑌 from the above equation and adding them to 

above equation, we get 

 

𝜓

(𝑛 − 1)
[𝐴(𝑈)𝑔(𝑋, 𝑉)𝜂(𝑌) − 𝐴(𝑈)𝑔(𝑌, 𝑉)𝜂(𝑋)]

+
𝜓

(𝑛 − 1)
[𝐴(𝑋)𝑔(𝑌, 𝑉)𝜂(𝑈)

− 𝐴(𝑋)𝑔(𝑈, 𝑉)𝜂(𝑌)]

+
𝜓

(𝑛 − 1)
[𝐴(𝑌)𝑔(𝑈, 𝑉)𝜂(𝑋)

− 𝐴(𝑌)𝑔(𝑋, 𝑉)𝜂(𝑈)] = 0. 

 

Putting 𝑌 = 𝑉 = 𝑒𝑖  in the above equation and taking 

summation over 𝑖, 1 ≤ 𝑖 ≤ 2𝑛 + 1, we get  

 

𝐴(𝑈)𝜂(𝑋) = 𝐴(𝑋)𝜂(𝑈), 

 

for all vector fields 𝑋 and 𝑈. Replacing 𝑋 by 𝜉 in the 

above equation, we get 

 

𝐴(𝑈) = 𝜂(𝜌)𝜂(𝑈), 

 

for all vector fields 𝑈 , where 𝐴(𝜉) = 𝑔(𝜉, 𝜌) = 𝜂(𝜌), 𝜌 

being the vector field associated to the 1 -form 𝐴, i.e.  

 

𝑔(𝑋, 𝜌) = 𝐴(𝑋), 

 This completes the proof. 
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