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I. INTORDUCTION 

Definition1.1.An involution on ring 𝑅is a unary 

operation * on  𝑎∗ ∗ = 𝑎  ,  𝑎 + 𝑏 ∗ = 𝑎∗ + 𝑏∗  and 

 𝑎𝑏 ∗ = 𝑏∗𝑎∗   for each 𝑎, 𝑏 ∈ 𝑅 . A ring with this 

opration is called a ring with involution or *-ring. 

Definition1.2.Let 𝑅 be a *-rings and let 𝐼 be an 

ideal of a ring 𝑅. Then 𝐼 is a *-ideal if 𝐼∗ is sub set of 

𝐼.(here we define for any non empty set 𝑆, we define 

𝑠∗ = {𝑠∗: 𝑠 ∈ 𝑆}) 

Definition1.3.A non zero ideal 𝐼 of an involution 

ring 𝑅 which is closed under involution is termed 

as *-ideal.That is 𝐼∗ = {𝑎∗ ∈ 𝑅|𝑎 ∈ 𝐼} ⊆ 𝐼 

Definition1.4.Asub ring 𝐴  of 𝑅  is said to be a 

bi-ideal of 𝑅   if 𝐴𝑅𝐴 ⊆ 𝐴  and a *-bi ideal if in 

addition it is closed under involution of 𝑅. 

Example let 𝑆 be a ring and let 𝑋 be an ideal of 𝑆 

with𝑋2 = 0. Let 𝑅 =  
𝑆 𝑋
𝑋 0

 then with the standard 

matrix operation 𝑅 is a ring and a matrix 

transposition is an involution, denoted by *. If 𝑆 

has a unity, then𝑅2 = 𝑅. If 𝑋 is a minimal ideal of 

𝑆,then 𝑋 =  
0 𝑋
0 0

  is a minimal ideal of 𝑅. 

Definition1.5.(𝑆, +, . ) is a semi- ring (a structure in 

which (𝑆, +) is a commutative semi group ,  𝑆, .   is 

a semi group, and distributes over +) then (𝑆, +, . ) 

is called an involution semi ring provided that *is 

an involution of 𝑆  satisfying the identities 

 𝑥 + 𝑦 ∗ = 𝑥∗ + 𝑦∗
, 𝑥𝑦 ∗ = 𝑦∗𝑥∗

 

Sometimes, semi ring may be equipped with a zero, 

and or an identities one. In such a case we require 

that the involution of satisfies 0∗ = 0 and 1∗ = 1. 

Definition1.6.A right (left) ideals of 𝐼∗ in a ring 𝑅∗ 

is called *- minimal ideals if  

i. 𝐼∗ ≠  0 ∗ and  

ii. If 𝐽∗ is a non zero (right/left) ideal of a 

ring 𝑅  with involution contained in 𝐼∗ 

then 𝐼∗ = 𝐽∗. 

Definition1.7.For a *-ring R the direct sum of all 

minimal *- ideal is denoted by 𝑆𝑜𝑐∗(𝑅), the *- scole 

of R. (if R has no *- minimal ideals then define 

𝑆𝑜𝑐∗(𝑅) to be zero).and also we have 𝑆𝑜𝑐∗(𝑅) is the 

sub set of 𝑆𝑜𝑐(𝑅). 

Definition1.8.Wesay R is *- simple R has no non 

zero proper ideals.  

Definition1.9.An ideal 𝐴∗  is said to be maximal 

ideals of the ring R with involution *, if  

i. 𝐴∗ ≠ 𝑅∗ 

ii. For anyideals 𝐵∗  is a sub set of 𝐴∗ , 

either 𝐵∗ = 𝐴∗ or 𝐵∗ = 𝑅∗ 

Definition1.10.LetR be a ring with involution. For 

some 𝑎 ∈ 𝑅, one may write  
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𝑖             𝐼 =< 𝑎 >∗= 𝑍𝑎 + 𝑍𝑎∗ + 𝑎𝑅 + 𝑅𝑎 + 𝑅𝑎𝑅 +

𝑎∗𝑅 + 𝑅𝑎∗ + 𝑅𝑎∗𝑅. 

ii    Clearly I is an ideal of R closed under 

involution and is called the principal *- ideal  

generated by 𝑎. One may deduce that 𝐼 =< 𝑎 >

+< 𝑎∗ >  = < 𝑎, 𝑎∗ >. 

iii. A ring with involution * is a principal *- 

ideal ring if each *- ideal is a principal *- 

ideal. More over we say that a group G is 

strongly principal *- ideal ring group, if 

G is not nil (𝐺 ≠ 0)  and every ring R 

with involution satisfaying 𝑅2 ≠ 0, and 

𝐺 = 𝑅∗ is a principal *- ideal ring. 

Definition1.11.Let R be *- ring. The intersection of 

all the nonzero ideals of R, called heart of R. and is 

denoted by  H(R) so R is sub directly irreducible if 

and only if 𝐻(𝑅) ≠ 0. The intersection of all nonzero 

*- ideals of R is denoted by 𝐻∗(𝑅). Then R is *- sub 

directly irreducible if and only if 𝐻∗(𝑅) ≠ 0 . If 

𝐻∗ 𝑅 = 0, then R is a sub direct product of *- sub 

direct of irreducible ring. 

 Definition1.12.A *- ideal is said to be *- prime if 

when ever 𝐴,𝐵  are *- ideals such that 𝐴𝐵 ⊆ 𝑃 

then𝐴 ⊆ 𝑃, 𝑜𝑟 𝐵 ⊆ 𝑃. From this R is *- prime ring if 

and only if  0  is a *- prime ideal.  

Corollary1.13.In everyinvolution ring 

𝑅,𝑛𝑅,𝑅 𝑛 ,𝑅𝑡 ,𝑅𝑝  and the maximal divisisble ideal 𝐷 

are *-ideals. 

Proposition1.14.Let 𝑅  be a *- ring. if 𝐼  is 

*-minimal ideals of 𝑅 ,then either  

i. 𝐼 is a minimal ideal of 𝑅 ; or  

ii. For any non zero ideal 𝐾 of 𝑅 , with 𝐾 

proper sub set of I,then 𝐼 = 𝐾 ⊕

𝐾∗,𝐾&𝐾∗ are minimal ideals of 𝑅.further 

more 𝐼2 ≠ 0,then there are exactly two 

non zero ideals of 𝑅 properly contained 

in 𝐼. If 𝑅2 = 0, then only case(i) 

Proof:Assume that 𝐼 is not minimal ideal of 𝑅 and 

let 𝐾  be any non zero ideal of 𝑅  with 𝐾 ⊆ 𝐼 since 

𝐾 + 𝐾∗ and  𝐾 ∩ 𝐾∗ are *- ideals of R and contained 

in 𝐼 .we have 𝐾 + 𝐾∗ = 𝐼  and 𝐾 ∩ 𝐾∗ = 0 . So 

𝐼 = 𝐾 ⊕𝐾∗.let 𝑌 be non zero ideal of 𝑅 such that 𝑌 

a sub set of 𝐾 then by the above argument,𝐼 = 𝑌 ⊕

𝑌∗  for any 𝑘 ∈ 𝐾  we have 𝑘 = 𝑦1 + 𝑦2  where 

𝑦1 ∈ 𝑌, 𝑦2 ∈ 𝑌∗  and hence 𝑘 − 𝑦1 = 𝑦2  thus  𝑦2 ∈ 𝐾 ∩

𝐾∗ = 0,yielding 𝑘 ∈ 𝑌 and hence 𝐾 = 𝑌 so 𝐾&𝐾∗  are 

minimal ideals of 𝑅. Next let 𝐵 be non zero ideal of 

𝑅  such that 𝐵 ⊆ 𝐼  and 𝐵neither 𝐾  nor 𝐾∗ .as with 

the argument for 𝐾,𝐵  is minimal ideal of 𝑅 . So 

𝐵𝐾 = 0 . Similarly, 𝐵𝐾∗,𝐵∗𝐾  and 𝐵∗𝐾∗  are zero, 

yielding  𝐼2 =  𝐵 ⊕ 𝐵∗  𝐾 ⊕ 𝐾∗ = 0 when 𝑅2 = 0 the 

set {𝑘 + 𝑘∗:𝑘 ∈ 𝐾} is a *- ideal of 𝑅. 

In part (ii) when 𝐼2 ≠ 0 we have 𝐾2 ≠ 0. Recall that a 

minimal ideal which is not square zero is a simple 

ring, so in the case we have 𝐾 and 𝐾∗ are simple 

rings. From 𝐼 = 𝐾 ⊕𝐾∗ and 𝐼\𝐾∗  and 𝐼\𝐾∗ ≈ 𝐾  we 

see that 𝐾∗, and hence 𝐾are maximal ideals of the 

ring 𝑅 . And in similar situation  in the 

square,occur frequently enough to warrant looking 

more closely at the setting where the ring is the 

direct sum of two simple rings. Ideal of 𝑅 and is 

contained 𝐼. So case(i) must hold when 𝑅2 = 0. 

Preposition1.15.Let𝑅 be a *- ring and let 𝐼 be a 

minimal ideal of 𝑅  such that 𝐼2 ≠ 0. Then either 

(exclusively) 

i. 𝐼 is *- ideal of 𝑅; or  

ii. 𝐼 ⊕ 𝐼∗ is a *- simple ring and hence is a 

*- minimal ideal of 𝑅. 

Proof:Assumesthat 𝐼 ≠ 𝐼∗ . Then minimally of 𝐼 

yields 𝐼 ∩ 𝐼∗ = 0 and hence 𝐼 + 𝐼∗ = 𝐼 ⊕ 𝐼∗. Since𝐼2 ≠

0, the minimal ideals  𝐼 and 𝐼∗ are simple rings and 

the rings 𝐼 ⊕ 𝐼∗has only 𝐼 and 𝐼∗ as proper nonzero 

ideals. Let 𝑌 be a non zero proper *- ideal of the 

*-ring 𝐼 ⊕ 𝐼∗ . So 𝑌  is 𝐼  or 𝐼∗  since 𝑌  is invariant 

under *, either case leads to the contradictory𝐼 = 𝐼∗. 

So 𝐼 ⊕ 𝐼∗ is a *- simple and consequently the only 

non zero *- ideal of 𝑅 contained 𝐼 ⊕ 𝐼∗ is itself. 

Example:Let Sbe a ring and let X be an ideal of S 

with 𝑋2 = 0. If S  has unity, then 𝑅2 = 𝑅. If X is 

minimal ideal of S, then 𝑋 =  
0 𝑋
0 0

  is minimal 

ideal of R. observe that 𝑋 = 0, 𝑋 ⊕ 𝑋∗is a *- minimal 

ideal of R. 

Preposition1.16.Let R be a *- ring. Then𝑆𝑜𝑐 𝑅 =

𝑇 ⊕ 𝑆𝑜𝑐∗ 𝑅 = 𝑇∗ ⊕ 𝑆𝑜𝑐∗(𝑅), where T is the direct 

sum of minimal ideals K of R such that K2 = 0 and 

𝐾 ⊕ 𝐾∗ is not a *- minimal ideal of R. 

Proof:Using a standard argument it can be shown 

that 𝑆𝑜𝑐(𝑅) is a direct sum of minimal ideals. Label 

this summands with ordinals so that 𝑆𝑜𝑐 𝑅 =

 ⊕𝑀ƛ , ƛ ∈ 𝐴 and  𝑆𝑜𝑐∗(𝑅) 

 𝛼≤ƛ ⊕𝑀ƛ , 𝑇 =  𝛼≤ƛ ⊕𝑀ƛ ,. Then 𝑆𝑜𝑐 𝑅 = 𝑆𝑜𝑐∗(𝑅) ⊕

𝑇. If 𝐼 is minimal ideal of Rand I2 ≠ 0 then I is the 

sub set of 𝑆𝑜𝑐∗(𝑅). Then 𝛼 ≤ ƛ  we have 𝑀ƛ
∗2

= 0 and  

𝑀ƛ + 𝑀ƛ
∗  is not a *-minimal ideals of R. since 

T ∩ Soc∗ R = 0  we have T∗ ∩ Soc∗ R = 0  and 

consequently𝑆𝑜𝑐 𝑅 = Soc∗ R ⊕ 𝑇∗. 

Proposition1.17.Let R be *- simple ring. Then 

either R is simple or R contains a maximal ideal K 

such that 𝑅 = 𝐾 ⊕𝐾∗ , 𝐾  and 𝐾∗  are simple rings 

𝑅2 ≠ 0, and then the only proper non zero ideals of 

R are 𝐾 and 𝐾∗. 

Proof:Observe that if R is not simple, then R is *- 

minimal ideal of itself which is not a minimal ideal. 

So 𝑅 = 𝐾 ⊕𝐾∗,where K and 𝐾∗ are minimal ideals 
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of R. if  T is an ideal of the ring K then T is an ideal 

of , so minimality of K yields 𝑇 = 0 or 𝑇 = 𝐾. Thus K 

is a simple ring. Since 𝑅/𝑅∗ ≈ 𝐾, we have 𝐾∗is a 

maximal ideal of R. similarly we obtain 𝐾∗ is a 

simple ring and K is a maximal ideal of R. since 

𝑅2 = 0 implies the existence of non zero  proper *- 

ideal of R, we must have 𝑅2 ≠ 0 then K and 𝐾∗ the 

only non zero proper ideals of R.  

Theorem1.18.Let R be *- ring and let M be a *- 

maximal ideal of R. if M is not maximal ideal of R, 

then there exist a maximal ideal  K of R such that; 

i. 𝐾 + 𝐾∗ = 𝑅 and 𝐾 ∩ 𝐾∗ = 𝑀; so 𝑅\𝐾∗ is a 

simple and 𝑅\𝑅∗ ≈ 𝐾\𝑀 

ii. 𝑅2 + 𝑀 = 𝑅 and the only proper ideal of 

R which properly contains M are K and 

𝐾∗; 

iii. K and 𝐾∗ are *- essential in R; 

iv. Either M is essential as an ideal in the 

ring R, or ther exist a maximal ideal of R 

such that 𝐾∗ = 𝑀 ⊕ 𝐼  and 𝑅 = 𝐼 ⊕ 𝐼∗ ⊕

𝑀. 

Proof:Since 𝑅 = 𝑅\𝑀 is a *- simple ring which is 

not simple, we have that there exists a proper ideal 

K of R with M proper sub set of K such that 

𝐾\𝑀 ⊕  𝐾\𝑀 ∗, with 𝐾\𝑀 and  𝐾\𝑀 ∗ = 𝐾∗\𝑀 being 

both maximal as ideals are and simple as rings. 

Thus K and 𝐾∗ are maximal ideals of R, 𝐾 + 𝐾∗ = 𝑅, 

𝐾 ∩ 𝐾∗ = 𝑀 since 𝑅2 = 𝑅, the only proper non zero 

ideals of R are 𝐾\𝑀 and 𝐾∗\𝑀. Then there are no 

proper ideals of R that properly contain 𝑀 except K 

and 𝐾∗ .For a purpose of contradiction assume 

there exist a non zero *-ideal T of R such that 

𝑇 ∩ 𝐾 = 0  also 𝑇 ∩ 𝐾∗ = 0 . Then 𝑇𝐾 = 0 = 𝑇𝐾∗  and 

hence 𝑇𝑅 = 𝑇 𝐾 + 𝐾∗ = 𝑇𝐾 + 𝑇𝐾∗ = 0 . Since 

𝑇 ∩ 𝐾 = 0  also we have 𝑅 = 𝑀 + 𝑇 = 𝑀 ⊕𝑇 . Hence 

𝑅\𝑀 ≈ 𝑇,  and 𝑇  is a *- simple ring which not a 

simple ring.also we have𝑇2 ≠ 0, a contradiction to 

𝑇𝑅 = 0 . Thus 𝐾∗  is *- essential in R, which 

immediately yields that 𝐾∗  also.To establish (iv) 

consider M to be not essential in the set of ideals of 

the ring R. observe that if K is essential in the set of 

ideals of the ring R, then so 𝐾∗, and consequently 

the non zero intersection  𝑀 = 𝐾 ∩ 𝐾∗  would also 

be essential. Thus there exists a non zero ideal I of 

R such that 𝐼 ∩ 𝐾 = 0. The only ideals of R which 

contains M are M,K,𝐾∗ and R. so either 𝐼 ⊕ 𝑀 = 𝐾∗ 

or 𝐼 ⊕𝑀 = 𝑅. In the former case, from 𝐼 ≈ 𝑀\𝐾∗ we 

have that I is a simple ring and hence I is a minimal 

ideal of R. finally consider 𝐼 ⊕ 𝑀 = 𝑅 for each 𝑘 ∈ 𝐾 

there exists ∈ 𝐼  ,𝑚 ∈ 𝑀  such that 𝑘 = 𝑖 + 𝑚 . But 

𝑖 = 𝑘 −𝑚 is in K, forcing  𝑖 = 0. So 𝑘 = 𝑚. Since 𝑘 is 

arbitrarily this yields the contradictory 𝑀 = 𝐾.Thus 

𝐼 ⊕𝑀 ≠ 𝑅. 

Theorem1.19.Let R be *- ring. If M is a maximal 

ideal of the ring R, then either (exclusively); 

i. 𝑀 ∩𝑀∗ is a maximal ideal of R; or  

ii. For any *- ideal K of R such that 

𝑀 ∩𝑀∗ ⊆ 𝐾 ⊆ 𝑅 , then K is a maximal 

ideal of R  and there is no ideal of R 

properly contained between 𝑀 ∩𝑀∗ and 

K, and between 𝑀 ∩𝑀∗ and M. 

Proof:(i). Assume that 𝑀 ∩𝑀∗   is not maximal  

ideal of R. then 𝑀 ≠ 𝑀∗. let K be any *-ideal of R 

such that 𝑀 ∩𝑀∗ ⊆ 𝐾 ⊆ 𝑅 . From  𝑅\𝑀∗ = (𝑀 +

𝑀∗)\𝑀∗ ≈ 𝑀(𝑀 ∩𝑀∗), we have that 𝑀(𝑀 ∩𝑀∗) is a 

simple ring. Thus 𝑀 ∩𝑀∗ is a maximal ideal of the 

ring M and there are no ideals of R properly 

contained between 𝑀 ∩𝑀∗ and M. from 𝑀 ∩𝑀∗ sub 

set of 𝑀 ∩ 𝐾  also sub set of M, we have either 

𝑀 ∩ 𝐾 = 𝑀 or 𝑀 ∩ 𝐾 = 𝑀 ∩𝑀∗. The former yields M 

sub set of K and hence 𝑀 = 𝐾, a contradiction to M 

is *- ideal. Consider 𝑀 ∩ 𝐾 = 𝑀 ∩𝑀∗.then K is not 

sub set of M and 𝑅\𝐾 = (𝑀 + 𝐾)\𝐾 ≈ 𝑀(𝑀 ∩𝑀∗) . 

Thus 𝑅\𝐾 is a simple ring and consequently K is 

maximal ideal of R. from 𝑅\𝑀 = (𝐾 + 𝑀)\𝑀 ≈

𝐾\(𝐾 ∩ 𝑀) = 𝐾(𝑀 ∩𝑀∗), we see that 𝐾\(𝑀 ∩𝑀∗) is a 

simple ring and hence there are no ideals of R 

properly contained in between 𝑀 ∩𝑀∗ and K. 

Lemma1.20.Let 𝐺 = 𝐻 ⊕𝐾 , 𝐻 ≠ 0,𝐾 ≠ 0  be a 

strongly principal *- ideal ring group. Then H and K 

are either both *- cyclic or both nil. 

Proof:Suppose that H is not nil. Let S be a *- ring 

with 𝑆+ = 𝐻 and 𝑆2 ≠ 0 and let T be the zero ring on 

K. the ring direct sum 𝑅 = 𝑆 ⊕ 𝑇 is the ring with 

involution satisfaying 𝑅+ = 𝐺 and 𝑅2 ≠ 0. Since T is 

a *- ideal in R, 𝑇 =< 𝑥 >∗ . Clearly 𝐾 = 𝑇+ =  𝑥 ∗ . 

Therefore K is not nil interchanging the roles of H 

and K yields that  His *- cyclic. 

Corollary1.20.Let 𝑮 = 𝐻 ⊕𝐾,𝐻 ≠ 0,𝐾 ≠ 0 be 

strongly principal *- ideal ring group. Then H and K 

are *- cyclic.  

Proof:It suffices to negate that H and K are both 

nil. Let 𝑅 =  𝐺 .   be a ring with involution 

satisfying𝑅2 ≠ 0. 

Case (i): suppose that 𝑅2 ⊆ 𝐾 . There exist 0 ∈

𝐻, 𝑘0 ∈ 𝐾, such that 𝑅 =< 0 , 𝑘0 >∗. Let  ∈ 𝐻, since 

 ∈ 𝑅 there exist integers 𝑛 and 𝑚, and 𝑥 ∈ 𝑅2 such 

that 

 = 𝑛 0 + 𝑘0 + 𝑚 0 + 𝑘0 
∗ + 𝑥However , 𝑥 ∈ 𝐾 , so 

 = 𝑛0 + 𝑚0
∗  and H is *-cyclic, contradicting the 

fact that H is nil. 

Case (ii): suppose that 𝑅2 ≠ 𝐾 . For all 𝑔1,𝑔2 ∈ 𝐺 

define 𝑔1𝑜𝑔2 = 𝜋𝐻(𝑔1𝑜𝑔2) , where 𝜋𝐻  is natural 

projection of G on to H. since  

 𝑔1𝑜𝑔2 
∗ = (𝜋𝐻 𝑔1𝑜𝑔2) ∗ = 𝜋𝐻 𝑔1𝑜𝑔2 

∗ = 𝜋𝐻 𝑔2
∗𝑜𝑔1

∗ 

= 𝑔2
∗𝑜𝑔1

∗ 
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Hence 𝑆 =  𝐺, 𝑜  is a ring with involution 

satisfying 𝑆2 ⊆ 𝐻 . The argument employed in (i) 

yield that K is *- cyclic with contradicts the fact 

that K is nill. 

Theorem1.21.There are no mixed strongly 

principal *- ideal ring groups. 

Proof:Let G be a mixed strongly principal *- ideal 

ring group. G is decomposable, so by lamma (that 

is let 𝐺 = 𝐻 ⊕𝐾, 𝐻 ≠ 0,𝐾 ≠ 0 be strongly principal 

*- ideal  ring group. Then H and K are either both *- 

cyclic or both nill. So 𝐺 = 𝐻 ⊕𝐾,𝐻 ≠ 0,𝐾 ≠ 0 with H 

and K both *- cyclic or  both nill. 

1) Suppose that H and K are both nill. There 

are no mixed nil groups by so, we may 

assume that H is a torsion group, and that 

K is torision free. Let R be *- ring with 

𝑅+ = 𝐺 and 𝑅2 ≠ 0. Clearly H is a *- ideal  in 

R and so 𝐻 =<  >∗. 

Let   = 𝑚, then 𝑚𝐻 = 0. H is divisible, there fore 

not bounded, a contradiction.  

2) Suppose that 𝐻 =  𝑥 ∗  and 𝐾 =  𝑒 ∗  with 

 𝑥 = 𝑛, and  𝑒 = ∞. The products 𝑥2 = 𝑥𝑒 =

𝑒𝑥 = 𝑒∗ = 𝑥 = 𝑒𝑥∗ = 𝑥𝑒∗ = 𝑥∗𝑒 = 0  and 

𝑒2 = 𝑛𝑒 induce a *- ring structure R on G 

satisfaying 𝑅2 ≠ 0 . Therefore there exist 

integers 𝑠 and 𝑡 such that 𝑅 =< 𝑠𝑥 + 𝑡𝑒 >∗ . 

Every 𝑦 ∈ 𝑅  is of the form 𝑦 = 𝑚𝑦𝑠𝑥 +

 𝑚𝑦 + 𝑢𝑦𝑛 + 𝑚𝑦𝑠𝑥
∗ +  𝑚𝑦

∗ + 𝑢𝑦
∗𝑛 𝑡𝑒∗,  with 

𝑚𝑦 ,𝑚𝑦
∗ ,𝑢𝑦 , and 𝑢𝑦

∗  integers. In particular 

 𝑚𝑒 + 𝑢𝑒𝑛 𝑡 = 1 . Hence 𝑡 = ±1 . 

Therefore, 𝑚𝑥 + 𝑢𝑥𝑛 = 0  and so 𝑛\𝑚𝑥 , 

however , 𝑥 = 𝑚𝑥𝑠𝑥 = 0, is a contradiction. 

 Theorem1.22.Let G be a mixed group. Then  

1. If G is a principal *- ideal  ring group, then 

𝐺𝑡  is bounded and 𝐺\𝐺𝑡  is a principal *- 

ideal ring group.  

2. Conversely, if 𝐺𝑡  is bounded and if there 

exists a unital principal *- ideal ring with 

additive group 𝐺\𝐺𝑡 , then G is a principal *- 

ideal ring group. 

 Proof: 1) Let R be a principal *- ideal ring with 

𝑅+ = 𝐺 . Since 𝐺𝑡  a *- ideal in R, 𝐺𝑡 =< 𝑥 >∗  and 

𝑛𝐺𝑡 = 0,𝑛 =  𝑥  now 𝐺 = 𝐺𝑡 ⊕𝐻  and 𝐻 ≅ 𝐺\𝐺𝑡 . Now 

𝑅 =< 𝑎 + 𝑦 >,𝑎 ∈ 𝐺𝑡 , 0 ≠ 𝑦 ∈ 𝐻. 

Suppose that 𝑅2 ⊆ 𝐺𝑡  and let  ∈ 𝐻 . Then there 

exist integers 𝑘𝑛 , 𝑘𝑛
∗  such that , 

 = 𝑘𝑛𝑦 + 𝑘𝑛
∗𝑦∗ + 𝑏  with 𝑏 ∈ 𝑅2  since 𝑅2 ⊆ 𝐺𝑡 , 𝑏 = 0 

and  = 𝑘𝑛𝑦 + 𝑘𝑛
∗𝑦∗ . Therefore 𝐻 =  𝑦 ∗.  H is a 

principal *- ideals ring group. 

If 𝑅2 ⊈ 𝐺𝑡 , then 𝑅 = 𝑅\𝐺𝑡  is a principal *- ideal ring 

with 𝑅+ ≅ 𝐺\𝐺𝑡 , and 𝑅2 ≠ 0.  

2) Conversely, suppose that 𝐺𝑡  is bounded, and 

that there exists a unitals principals *- ideals ring 

S with unity and * is the identity involution such 

that 𝑆+ = 𝐺𝑡 . Let 𝑅 = 𝑆𝐼 =  𝐼 ∩ 𝑆 ⊕  𝐼 ∩ 𝑇 . T with 

𝑒, 𝑓 the unities of 𝑆 and 𝑇, respectively. Then R is a 

ring with involution  *. 

Let  I be a *- ideal in R, then 𝐼 =  𝐼 ∩ 𝑆 ⊕ (𝐼 ∩ 𝑇) 

Now 𝐼 ∩ 𝑆𝞓∗𝑺  and so 𝐼 ∩ 𝑆 =< 𝑥 >∗ . Similarly 

𝐼 ∩ 𝑇 =< 𝑦 >∗.  

Clearly < 𝑥 + 𝑦 >∗⊆ 𝐼  however, 𝑥 = 𝑒 𝑥 + 𝑦 ∈< 𝑥 +

𝑦 >∗, 𝑥∗ = 𝑒 𝑥 + 𝑦 ∗ ∈< 𝑥 + 𝑦 >∗,  and 𝑦 = 𝑓 𝑥 + 𝑦 ∈<

𝑥 + 𝑦 >∗, 𝑦∗ = 𝑓 𝑥 + 𝑦 ∈< 𝑥 + 𝑦 >∗ 

Hence we conclude that 𝐼 =< 𝑥 + 𝑦 >∗. 

Theorem1.23.Let G be a torision free strongly *- 

ideal ring group. Then G is either indecomposable, 

or is the direct sum of two nil groups. 

Proof:It suffices to negate that 𝐺 =  𝑥1 
∗ ⊕

 𝑥2 
∗, 𝑥𝑖 ≠ 0, 𝑖 = 1,2 

Suppose that it is so the product : 𝑥𝑖𝑥𝑗 = 3𝑥𝑖 and 

𝑥𝑖
∗𝑥𝑗 = 0  for 𝑖 = 𝑗 = 1,2  , 𝑥𝑖𝑥𝑗 = 𝑥𝑖

∗𝑥𝑗 = 0,  for 𝑖 ≠ 𝑗 

induce a ring structure R of G with involution *- 

satisfaying 𝑅2 ≠ 0. Therefore there exist non zero 

integer 𝑘1, 𝑘2  such that 𝑅 = < 𝑘1𝑥1 + 𝑘2𝑥2 >∗ .Every 

𝑥 ∈ 𝑅 is of the form:  

𝒙 =  𝒓𝒙 + 𝟑𝒔𝒙 𝒌𝟏𝒙𝟏 +  𝒓𝒙 + 𝟑𝒕𝒙 𝒌𝟐𝒙𝟐 +  𝒓𝒙
′ +

𝟑𝒔𝒙′𝒌𝟏𝒙𝟏∗+𝒓𝒙′+𝟑𝒕𝒙′𝒌𝟐𝒙𝟐∗ where 𝒓𝒙,𝑟𝑥′,𝑠𝑥,𝑡𝑥, 𝑠𝑥′,𝑡𝑥′ 

are integers. From 𝑟𝑥1 + 3𝑠𝑥1 = ±1, it follows that 

𝑟𝑥1 ≡ ±1(𝑚𝑜𝑑3) . However 𝑟𝑥1 + 3𝑡𝑥1 = 0  implies 

𝑟𝑥1 ≡ 0(𝑚𝑜𝑑3) which is a contradiction. 

Theorem1.24.Let G be torision strongly principal 

*- ideal ring group. Then G is a *- cyclic group or 

𝐺 =  𝑥1 
∗ ⊕  𝑥2 

∗,  with  𝑥𝑖 = 𝑝 , a prime , where 

𝑖 = 1,2. 

 Proof:Suppose that G is a strongly principal *- 

ideal ring group. Let G be indecomposable .then 

𝐺 ≅ 𝑍𝑝𝑛 , where p is a prime , 1 ≤ 𝑛 ≤ ∞. If 𝑛 = ∞, 

then G is divisible and so G is nil, which is a 

contradiction. Hence G is cyclic and so *- cyclic. 

Next suppose that 𝐺 = 𝐻 ⊕𝐾,𝐻 ≠ 0,𝐾 ≠ 0, either H 

or K are both *- cyclic or both nil. If H and K are nil, 

then they are both divisible, so G is nil  which is 

again a contradiction. Therefore 𝐺 =  𝑥1 
∗ ⊕  𝑥2 

∗ 

with  𝑥𝑖 = 𝑛𝑖𝑖 = 1,2. If  𝑛1,𝑛2 = 1, then G is *- cyclic 

. other wise, let p be a prime divisor of  𝑛1 ,𝑛2 . Then 

𝐺 =  𝑦1 
∗ ⊕  𝑦2 

∗ ⊕𝐻  with  𝑦𝑖 = 𝑝𝑚𝑖 , 𝑖 = 1,2  and 

1 ≤ 𝑚1 ≤ 𝑚2. Since  𝑦1 
∗ ⊕  𝑦2 

∗ is neither *- cyclic 

nor nil, 𝐻 = 0. The product 𝑦𝑖𝑦𝑗 = 𝑝2
𝑚 − 𝑙𝑦2 , 𝑦𝑖𝑦𝑗

∗ = 0 

where 𝑖, 𝑗 = 1,2 induce a *- ring structure R on G 

with 𝑅2 ≠ 0  . therefore,  𝑅 =< 𝑠1𝑦1 + 𝑠2𝑦2 >∗,  where 

𝑠1  𝑎𝑛𝑑 𝑠2 are integers. Every element 𝑥 ∈ 𝑅 has the 

form : 

𝑥 = 𝑘𝑥𝑠1𝑦2 +  𝑘𝑥𝑠2 + 𝑚𝑥𝑝2−1
𝑚  𝑦2 + 𝑘𝑥𝑠1𝑦1

′ +

 𝑘𝑥
′ 𝑠2 + 𝑚𝑥𝑝2−1

𝑚  𝑦2
∗. 
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Preposition1.25.Let R be *- ring. Then the 

following are equivalent; 

i.  H∗(R )^2 ≠ 0 

ii. R is *- prime ring with at least one 

minimal ideal  ring. 

Proof:Let 𝐻∗ = 𝐻∗(𝑅) . Assume that (𝐻∗)^2 ≠ 0 . 

Then 𝐻∗ is minimal *- ideal of R. either 𝐻∗ minimal 

of the ring R, or 𝐻∗ = 𝐾 ⊕𝐾∗ where K and 𝐾∗  are 

minimal ideals of R. in either case, if A and B are 

non zero *- ideals of R, then 𝐻∗ ⊆ 𝐴, 𝐻∗ ⊆ 𝐵  and 

hence (𝐻∗)2 ≠ 0 ⊆ 𝐴𝐵. So R is *-prime ring.  

Conversely assume that (ii). Let I be a fixed minimal 

*-ideal of R and let A be any non zero *-ideal of R. 

then 𝐴𝐼 ≠ 0 . So 𝐴 ∩ 𝐼 = 𝐼 . Thus 𝐼 ⊆ 𝐴  for each *- 

ideal A of R, yielding 𝐻∗ = 𝐼. Since *- prime we have 

(𝐻∗)2 ≠ 0. From this we conclude that every prime 

ideal is maximal ideal. 
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