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This paper presents a novel approach to integrating solar and wind renewable energy sources with the electrical power grid for 

electric vehicle (EV) charging, employing an off-board multi-port integrated topology (MPIT) with artificial neural network 

(ANN) control for enhanced performance. The MPIT consists of four power converters sharing a single common dc-link, 

facilitating efficient power transfer between EVs, renewable energy sources (wind and solar photovoltaic panels), and the grid. 

The MPIT operates in four distinct modes: Grid-to-vehicle (G2V), Vehicle-to-grid (V2G), Renewable-to-grid (R2G), and 

Renewable-to-vehicle (R2V), enabling bidirectional energy flow and flexibility in grid integration. An ANN controller is 

implemented for maximum power point tracking (MPPT) to optimize the utilization of solar and wind energy resources. The 

paper details the operation principles of the MPIT, the design and implementation of the ANN controller, and the simulation 

results demonstrating the system's effectiveness in enhancing renewable energy utilization and EV charging efficiency. The 

proposed approach holds promise for advancing the integration of renewable energy sources into smart grid systems while 

meeting the growing demand for sustainable transportation solutions. 

  

Index Terms— Smart grid, Electric vehicle (EV) charging, Solar and wind energy, Multi-port integrated topology (MPIT), 

Artificial neural network (ANN) control, Maximum power point tracking (MPPT) 

1. INTRODUCTION 

Electric mobility is a crucial driver for enhancing 

sustainability and efficiency in the transport sector, 

encompassing various vehicles like electric vehicles 

(EVs), hybrid EVs, fuel cell vehicles, and electric bicycles 

[1-2]. To avoid power quality issues, maximise 
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interaction with other electrical appliances, and take 

advantage of possibilities in microgrids, smart grids, and 

smart homes, meticulous supervision is required when 

EVs are integrated into the electrical grid. Considering 

the customer's viewpoint, power demand, and 

aggregator income is vital for optimising the EV 

charging procedure in this setting. Energy efficiency is 

also driving the rise of two-way energy exchange modes, 

such as grid-to-vehicle (G2V) and vehicle-to-grid (V2G) 

operations [3-5]. Proposed solutions include a 

single-phase on-board bidirectional charger capable of 

G2V and V2G modes, hierarchical energy management 

strategies, and economic dispatch models for EVs with 

renewable [5-8]. Furthermore, strategies such as smart 

charging techniques and cost minimization of charging 

stations with EVs and photovoltaic’s (PVs) are being 

explored  [9]. To address the challenges of integrating 

EVs and renewables (both solar and wind) into the grid, 

a Multi-Port Integrated Topology (MPIT) is proposed 

[10-13]. This topology facilitates seamless integration of 

EVs and renewables (both solar and wind) with the 

electrical grid through streamlined power converters 

[14]. Unlike traditional topologies that require multiple 

converters and grid intermediaries, the MPIT offers a 

more efficient and cost-effective solution [15]. It enables 

bidirectional energy flow, allowing EVs to charge 

directly from renewables without relying on the grid as 

an intermediary. Moreover, the MPIT ensures sinusoidal 

grid current and unitary power factor in all operating 

modes, mitigating power quality issues [16]. 

Experimental validation at the residential level 

demonstrates the effectiveness of the MPIT across 

various operation modes, including G2V, V2G, 

renewable-to-grid (R2G), and renewable-to-vehicle 

(R2V) modes [17]. The proposed MPIT presents a 

promising solution for integrating EVs and renewables 

(both solar and wind) into the electrical grid, 

contributing to sustainability and energy efficiency 

goals. Its streamlined architecture, bidirectional energy 

flow capabilities, and focus on power quality make it 

valuable asset in future smart grid environments [18]. 

While this paper primarily focuses on PVs and wind 

energy, other renewable energy sources could be 

integrated using alternative power converters and 

control algorithms, further expanding the applicability 

of the MPIT in diverse residential settings [19]. The 

transition to sustainable energy sources and the 

electrification of transportation are critical components 

of global efforts to mitigate climate change and reduce 

reliance on fossil fuels. Electric vehicles (EVs) represent a 

key pathway towards achieving these goals, offering 

lower emissions and reduced environmental impact 

compared to conventional internal combustion engine 

vehicles [20]. However, the widespread adoption of EVs 

poses significant challenges to the existing energy 

infrastructure, particularly in terms of charging 

infrastructure and energy supply. To address these 

challenges, there is a growing need to develop 

innovative solutions that integrate renewable energy 

sources with the electrical power grid to power EVs 

efficiently and sustainably [21]. Solar and wind energy 

are two abundant and renewable resources that have 

gained considerable attention for their potential to 

power EVs [22]. However, the intermittent nature of 

solar and wind energy generation presents challenges 

for reliable and consistent EV charging. Traditional 

charging methods often rely on grid-connected charging 

stations, which may draw power from non-renewable 

sources and contribute to grid instability [23]. To 

overcome these limitations, there is a need for advanced 

charging infrastructure that leverages renewable energy 

sources in a smart and efficient manner. In this context, 

this paper presents a novel approach to integrating solar 

and wind renewable energy sources with the electrical 

power grid for EV charging. Our approach employs an 

off-board multi-port integrated topology (MPIT) with 

artificial neural network (ANN) control to enhance the 

performance and efficiency of renewable energy 

utilization for EV charging [24]. The MPIT is a 

sophisticated power electronics system comprising four 

power converters interconnected through a common 

dc-link. This architecture facilitates seamless energy 

transfer between EVs, solar and wind photovoltaic 

panels, and the grid, enabling bidirectional energy flow 

and grid integration [25]. Central to our approach is the 

implementation of ANN control for maximum power 

point tracking (MPPT), which optimizes the utilization 

of solar and wind energy resources for EV charging. The 

ANN controller continuously monitors and adjusts the 

operation of the MPIT to ensure that the EVs are charged 

with the maximum available renewable energy while 

maintaining grid stability [26]. By dynamically adjusting 

the operation of the power converters based on real-time 

environmental and grid conditions, the ANN control 
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system maximizes the efficiency of renewable energy 

utilization and minimizes the reliance on non-renewable 

energy sources [27]. In addition to presenting the 

theoretical framework and design principles of the MPIT 

and ANN control system, this paper also provides 

detailed simulation results to demonstrate the efficacy of 

the proposed approach [28]. The simulations show how 

the MPIT effectively manages energy flow between EVs, 

renewable energy sources, and the grid, resulting in 

efficient EV charging and grid integration [29]. 

Furthermore, the paper discusses the potential 

implications of the proposed approach for advancing the 

integration of renewable energy sources into smart grid 

systems and accelerating the transition towards 

sustainable transportation solutions. Overall, this paper 

contributes to the growing body of research on 

renewable energy integration and EV charging 

infrastructure by presenting a novel and innovative 

approach that leverages advanced power electronics and 

control techniques [30]. By harnessing the power of solar 

and wind energy for EV charging, our approach offers a 

sustainable and environmentally friendly solution that 

aligns with the goals of reducing greenhouse gas 

emissions and promoting energy sustainability. 

 

2. SYSTEM CONFIGURATION AND DESIGN 

The system configuration for enhanced integration of 

solar and wind renewable energy for electric vehicle 

(EV) charging revolves around a Multi-Port Integrated 

Topology (MPIT) with Artificial Neural Network (ANN) 

control. Solar photovoltaic (PV) panels and wind 

turbines serve as the primary renewable energy sources, 

harnessing solar and wind energy, respectively, and 

converting them into electrical energy as shown in figure 

.1. The MPIT acts as the central hub, comprising power 

converters interconnected via a common DC-link, 

facilitating bidirectional energy flow between the 

renewable energy sources, the electrical grid, and EVs 

equipped with bidirectional charging capabilities. This 

setup enables optimized energy management, allowing 

EVs to charge from renewable sources when available 

and discharge excess energy back to the grid as needed. 

The ANN control system orchestrates this process, 

continuously monitoring real-time data from solar 

panels, wind turbines, grid conditions, and EV charging, 

ensuring efficient utilization of renewable energy and 

grid stability. Through this integrated approach, the 

system aims to minimize reliance on non-renewable 

energy sources, reduce carbon emissions, and promote 

sustainable transportation solutions. 

 

Fig. 1. The proposed MPIT circuit for connecting EVs 

and renewables to the grid. 

 

3. PHOTOVOLTAIC SYSTEM  

The photovoltaic cell can be considered as an ideal 

source of current supplying a current proportional to the 

incident light power, in parallel with a diode which is 

represented by the P-N junction. Consequently, the PV 

cell can be modelled by Fig.2. The single-diode PV panel 

is designed by considering open circuit voltage Voc, 

short circuit current Isc, maximum peak voltage Vmpp, 

and current Impp, at the MPP of the I-V curve. 

 

Fig. 2 Electrical circuit of a photovoltaic cell 

Based on the circuit, the current generated by the panel 

can be presented by the following equation: 

IPV = IPh − Iⅆ − Ish                             (1) 

The expression of the current at the junction is as 

follows: 

Iⅆ =
Isc+k1∗ΔT

exp⁡(
q(vOc)+kv(ΔT)

akTNs
)−1

                        (2) 

The current in the resistor Rsh is equal to: 

Ish = (
VPv+Rs∗IPV

Rsh
)                                    (3) 

Iph  : the photo- current 

Id    : the reverse saturation current of the diode 

Ns   : the number of cells in series 
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Ipv  : the current supplied by cell when it operates as a 

generator 

T    : the effective cell temperature in Kelvin (K) 

VPV : the voltage across this cell 

a     : the ideality factor 

K    : Boltzmann constant (k = 1.38.10−23) 

q    : the charge of the electron, (q = 1,602.10−19 C) 

G   : solar irradiation in w / m², 

Rsh⁡: the shunt resistance characterizing the leakage 

currents of the junction 

Rs : the series resistance representing the various 

connection resistances. 

4. SOLAR PV BOOST CONVERTER WITH MPPT 

ALGORITHM. 

The solar PV boost converter with Artificial Neural 

Network (ANN) controlled Perturb and Observe (P&O) 

Maximum Power Point Tracking (MPPT) algorithm is an 

advanced approach to optimizing the performance of 

photovoltaic (PV) systems as shown in figure .3. This 

system combines the best parts of traditional P&O MPPT 

with the adaptive learning power of artificial neural 

networks, making tracking the PV array's maximum 

power point (MPP) more efficient and accurate. The PV 

array captures sunlight and converts it into electrical 

energy, generating a direct current (DC) output that is 

fed into the boost converter. The P&O MPPT algorithm 

operates in conjunction with the boost converter to 

continuously monitor the output power of the PV array 

and adjust the operating voltage to maximize power 

extraction. In ANN-controlled P&O MPPT, a computer 

program is taught to guess the best direction for the 

perturbation based on past data and inputs in real time. 

The ANN uses input parameters such as solar irradiance, 

temperature, and voltage-current characteristics to 

generate predictions about the optimal perturbation 

direction. These predictions are used to dynamically 

adjust the operating voltage of the PV array, guiding it 

towards the MPP more effectively than traditional P&O 

MPPT methods. The integration of ANN control with 

P&O MPPT offers several advantages over traditional 

MPPT techniques. By leveraging machine learning 

capabilities, the system can adapt to dynamic and 

nonlinear behavior in the PV array, resulting in 

improved accuracy and efficiency in tracking the MPP. 

Additionally, the ANN can learn from past experiences 

and adjust its predictions accordingly, leading to 

enhanced performance and reliability of the PV system 

over time. The Perturb and Observe (P&O) Maximum 

Power Point Tracking (MPPT) algorithm is a crucial tool 

in optimizing power output from solar photovoltaic (PV) 

systems. It uses a boost converter to raise the voltage the 

panels produce to a level suitable for load or battery 

storage. The P&O algorithm determines the maximum 

power point (MPP), which the boost converter which 

consists of an inductor, a switch, a diode, and a capacitor 

plays a crucial role in maintaining. The P&O MPPT 

algorithm operates by periodically perturbing the 

voltage or current of the PV system and observing the 

resulting change in power. If power increases, the 

algorithm adjusts the voltage in that direction, while if 

power decreases, it reverses the direction. This iterative 

process continues until the maximum power point is 

reached and maintained, adapting to changes in sunlight 

and temperature. The controller implementing the P&O 

algorithm adjusts the duty cycle of the boost converter's 

switch, ensuring the PV system operates at or near its 

maximum power point, maximizing the efficiency of 

solar energy conversion. When the boost converter and 

the P&O MPPT algorithm are combined in a solar PV 

system, they make it easier to get power and control the 

voltage. They can also adapt to changes in the 

environment so that they always get the best power 

output, which improves the overall performance and 

dependability of solar renewable energy systems. 

 

Figure. 3 solar PV boost converter configuration with 

ANN controlled MPPT algorithm 
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5. MPPT ALGORITHM FOR SOLAR PV SYSTEM 

The Perturb and Observe (P&O) algorithm is a common 

method used for Maximum Power Point Tracking 

(MPPT) in solar photovoltaic (PV) systems. This 

algorithm works by perturbing (i.e., slightly adjusting) 

the voltage or current of the PV system and observing 

the resulting change in power as shown in figure .4. The 

goal is to find the maximum power point (MPP), where 

the product of current and voltage is maximized. Here is 

a detailed explanation of the P&O algorithm, including 

its working operation and the relevant formulas. 

a. Working Operation of P&O MPPT Algorithm 

1. Initial Measurement: 

a) Measure the current voltage (𝑉𝑘)  and current 

(𝐼𝑘) from the PV panel. 

b) Calculate the power (𝑃𝑘) using:  

𝑃𝑘 = 𝑉𝑘 ⁡× ⁡ 𝐼𝑘   

2. Perturbation: 

a) Introduce a small perturbation in the voltage. 

This can be done by adjusting the duty cycle (D) 

of the boost converter connected to the PV 

panels. 

b) The perturbation can be an increase (ΔV) or 

decrease (−ΔV) in the voltage. 

3. Observation: 

a) Measure the new voltage (𝑉𝑘+1)and current (𝐼𝑘+1

). 

b) Calculate the new power (𝑃𝑘+1) using:  

a. 𝑃𝑘+1 = 𝑉𝑘+1 ⁡× ⁡ 𝐼𝑘+1  

4. Comparison and Decision Making: 

(i) Compare the new power ( 𝑃𝑘+1 ) with the 

previous power (𝑃𝑘 ): 

a) If 𝑃𝑘+1 >⁡𝑃𝑘   , the perturbation has moved 

the operating point closer to the MPP. 

Continue perturbing in the same direction 

(if the previous perturbation was +ΔV, keep 

+ΔV; if it was −ΔV keep −ΔV). 

b) If 𝑃𝑘+1 <⁡𝑃𝑘   , the perturbation has moved 

the operating point away from the MPP. 

Reverse the direction of perturbation (if the 

previous perturbation was +ΔV, change to 

−ΔV; if it was −ΔV, change to +ΔV). 

5. Update: 

a) Update the duty cycle of the boost converter to 

adjust the voltage accordingly. 

6. Repeat: 

a) Repeat the process continuously to track the 

maximum power point. 

b. Formulas Used in P&O MPPT Algorithm 

1. Power Calculation: 

𝑃𝑘 = 𝑉𝑘 ⁡× ⁡ 𝐼𝑘  

𝑃𝑘+1 = 𝑉𝑘+1 ⁡× ⁡ 𝐼𝑘+1  

2. Change in Power and Voltage: 

Δ𝑃 = 𝑃𝑘+1 − 𝑃𝑘  

Δ𝑉 = 𝑉𝑘+1 − 𝑉𝑘  

3. Decision Logic: 

a) If Δ𝑃 > 0: 

i. If Δ𝑉 > 0, increase voltage perturbation. 

ii. If Δ𝑉 < 0, decrease voltage perturbation. 

b) If Δ𝑃 < 0: 

i. If Δ𝑉 > 0, decrease voltage perturbation. 

ii. If Δ𝑉 < 0, increase voltage perturbation. 

 

6.  WIND POWER GENERATION SYSTEM  

In a wind power generation system utilizing a 

Permanent Magnet Synchronous Generator (PMSG), the 

conversion of wind energy to electrical energy involves 

multiple stages, starting with the capture of kinetic 

energy by wind turbine blades. These blades are 

aerodynamically designed to rotate when exposed to 

wind flow, converting the wind's kinetic energy into 

mechanical energy. This mechanical energy drives the 

rotor of the PMSG, generating a three-phase alternating 

current (AC) in the stator windings due to the rotating 

magnetic field. The generated AC power is then 

converted to direct current (DC) using a rectifier. This 

DC power is subsequently fed into a DC-DC boost 

converter, which increases the voltage to a desired level, 

ensuring efficient power transfer and utilization. 
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Figure 4 Flow Chart for Perturb and Observation 

Algorithm for solar PV system 

To optimize the power output from the wind turbine, a 

Maximum Power Point Tracking (MPPT) algorithm is 

employed specifically the Perturb and Observe (P&O) 

algorithm. The P&O algorithm operates by periodically 

perturbing (adjusting) the operating point of the system 

and observing the resulting changes in power output. If 

a perturbation leads to an increase in power, the 

algorithm continues to adjust in that direction; if it leads 

to a decrease, the direction is reversed. This process 

iteratively converges on the maximum power point, 

ensuring that the system consistently operates at its 

highest efficiency. To further enhance the performance 

of the MPPT, an Artificial Neural Network (ANN) can be 

integrated with the P&O algorithm. The ANN, trained 

on various operating conditions and parameters, 

provides more accurate predictions and adjustments, 

improving the responsiveness and accuracy of the MPPT 

process. The ANN-controlled P&O algorithm 

dynamically adjusts the duty cycle of the boost 

converter, optimizing the voltage and current to 

maintain maximum power output from the wind turbine 

under varying wind conditions as shown in figure.5. 

This integrated approach ensures that the wind power 

generation system operates efficiently and effectively, 

maximizing energy capture and conversion. 

 
Figure 5. Typical diagram of wind-turbine system with 

MPPT. 

 

7. P&O MPPT ALGORITHM FOR WIND POWER 

GENERATION SYSTEM 

A Maximum Power Point Tracking (MPPT) boost 

converter is a critical component in wind power 

generation systems that use a Permanent Magnet 

Synchronous Generator (PMSG). The PMSG generates 

AC power as it converts mechanical energy from wind 

turbines into electrical energy. To integrate this AC 

power into a DC system, a rectifier is used to convert the 

AC output of the PMSG to DC. However, this rectified 

DC voltage is typically not at its optimal value for 

maximum power extraction as shown ion figure .6. This 

is where the boost converter comes into play. The boost 

converter steps up the rectified DC voltage to a higher, 

more efficient level for power transfer. The efficiency of 

this process hinges on the MPPT algorithm, which 

continuously adjusts the duty cycle of the boost 

converter to ensure that the wind power system operates 

at its maximum power point. The Perturb and Observe 

(P&O) algorithm is one of the most commonly used 

methods for MPPT. It works by periodically perturbing 

(adjusting) the duty cycle of the boost converter and 

observing the change in power output. If the power 

increases, the algorithm continues in the same direction; 

if it decreases, the direction is reversed. This iterative 

process helps in finding and maintaining the maximum 

power point despite changes in wind speed and other 

environmental conditions. The integration of an 

Artificial Neural Network (ANN) with the P&O 

algorithm further enhances the MPPT process. ANNs 

can predict the optimal operating point based on 

historical data and real-time inputs, improving the 

responsiveness and accuracy of the MPPT system. By 

combining the predictive capabilities of ANN with the 

traditional P&O algorithm, the boost converter can adapt 
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more swiftly to changing wind conditions, thereby 

maximizing the efficiency of the wind power generation 

system. This combination of advanced control 

techniques ensures that the wind energy is harnessed 

effectively, providing a stable and high-voltage DC 

output suitable for further processing or storage. 

1. Wind Power Calculation 

The power available in the wind is given by:  

𝑃𝑤𝑖𝑛𝑑 =
1

2
𝜌𝐴𝑣3  

 Where: 𝜌 is the air density, 𝐴 is the swept area of the 

wind turbine blades (𝐴 = 𝜋𝑅2, with 𝑅 being the radius of 

the blades), 𝑉 is the wind speed. 

2. PMSG Output Voltage 

The AC voltage generated by the PMSG is proportional 

to the rotational speed of the wind turbine: 

 𝑉𝑃𝑀𝑆𝐺 = 𝑘𝑒𝜔 

Where: 𝑘𝑒  is the back EMF constant, 𝜔  is the angular 

speed of the generator (rad/s). 

3. Rectified DC Voltage 

The rectifier converts the AC voltage from the PMSG to 

DC voltage:  

𝑉𝐷𝐶 = √2𝑉𝑃𝑀𝑆𝐺  

4. Boost Converter Voltage Gain 

The relationship between the input and output voltage 

of the boost converter is given by: 

 𝑉0 =
𝑉𝑖𝑛

1−𝐷
 

 Where: 𝑉𝑜𝑢𝑡  is the output voltage of the boost converter, 

𝑉𝑖𝑛 is the input voltage to the boost converter, D is the 

duty cycle of the boost converter (the fraction of the 

switching period that the switch is on). 

5. Perturb and Observe (P&O) Algorithm 

The P&O algorithm adjusts the duty cycle to track the 

maximum power point. The power extracted from the 

wind turbine is:  

𝑃 = 𝑉0 ⋅ 𝐼  

Where: 𝑉0t is the output voltage of the boost converter, 𝐼 

is the current flowing through the load. 

In the P&O algorithm, the following steps are taken: 

1. Measure the current power 𝑝(𝑛)  at the 𝑛 − 𝑡ℎ 

step. 

2. Perturb the duty cycle D. 

3. Measure the new power 𝑃(𝑛+1). 

4. Compare 𝑃(𝑛+1)) with 𝑃𝑛: 

a. If 𝑃(𝑛+1) > 𝑃𝑛 , continue in the same 

direction of perturbation. 

b. If 𝑃(𝑛+1) < 𝑃𝑛 , reverse the direction of 

perturbation. 

 

 

Fig.6 Flow chart of perturb and observe algorithm for 

wind system 

 

8. ELECTRIC VEHICLE BATTERY ENERGY 

STORAGE SYSTEM 

Optimal utilisation of renewable energy sources and grid 

supplementation can be achieved through the electric 

vehicle (EV) battery energy storage system, which 

employs a bidirectional DC-DC buck-boost converter to 

dynamically manage power flow (as illustrated in 

figure.7). Photovoltaic panels, which transform sunlight 

into electricity, are the first component of the system that 

is used to capture solar energy. For efficient charging, 

the converter changes this voltage to the right level. 

Incorporating wind power is also possible with the help 

of permanent magnet synchronous generators (PMSGs), 

which convert alternating current (AC) into direct 

current (DC) via rectifiers. The converter receives this 

rectified DC electricity and adjusts its voltage in a 

manner similar to that of solar power. When renewable 

energy sources like wind and solar aren't producing 

enough power, the system switches to using grid 

electricity. The converter takes electricity from the grid 

and changes it to a voltage that the electric vehicle's 

battery can handle. With this automated switching, 

charging may continue even when renewable energy 
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sources aren't available. When circumstances allow it, 

this system may reverse power flow, which is a novel 

function. The bidirectional DC-DC buck-boost converter 

enables power transmission back to the grid during 

moments of strong renewable energy output or peak 

demand. Through energy credits or financial incentives 

provided by utility providers, EV owners may be able to 

reap economic advantages thanks to this vehicle-to-grid 

(V2G) capacity, which also helps maintain system 

stability. Simply put, this integrated system guarantees 

dependable electric vehicle charging while optimising 

the usage of renewable energy sources. To keep the 

battery performing at its best, it adapts to new 

circumstances by automatically balancing the flow of 

electricity from solar, wind, and the grid. 

Mode 1: Battery Charging (Buck Mode) 

a) Switch S1 and Diode D2 Operation: A closed 

switch S1 and a forward-biased diode D2 constitute 

this state. When the switch is closed, current may go 

from the charging station to the electric vehicle's 

battery, and diode D2 makes sure it can only go in 

one direction. 

b) Buck Mode Operation: The converter works in buck 

mode, reducing the voltage from the external power 

source to match the lower voltage of the electric 

vehicle battery. Ensuring the battery obtains the 

optimum voltage is crucial for efficient charging. 

c) Charging the Battery: The electric vehicle's battery is 

charged effectively when electricity is transferred 

from an external source to it. To accomplish the 

target voltage conversion ratio while operating in 

buck mode, one must regulate the switch's duty 

cycle. Here are the main formulae for buck mode: 

 Voltage Conversion Ratio (Duty Cycle, D): D = 
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
 

 Inductor Current (I_L): 𝑉𝑜𝑢𝑡 = 
𝑉𝑖𝑛×(1−𝐷)

𝐷×(1−𝐷)×𝐼𝐿
 

 Output Power (Pout): Pout = 𝑉𝑜𝑢𝑡 × 𝐼𝐿 

 Efficiency (η): η = 
𝑃𝑂𝑢𝑡

𝑃𝑖𝑛
× 100% 

 

 

Mode 2: Battery Discharging for Power Delivery (Boost 

Mode) 

a) Switch S2 and Diode D1 Operation: Switch S2 is 

closed and diode D1 is biassed forward in this mode. 

Diode D1 guarantees one-way current flow, and the 

closed switch permits current to flow from the EV 

battery to the load, such as electric motors. 

b) Boost Mode Operation: To match the voltage 

needed by the load, the converter functions in boost 

mode, which means it raises the voltage from the EV 

battery. Even if the load voltage is greater than the 

battery voltage, this is critical to ensure that the 

vehicle's systems get enough power. 

c) Power Delivery: The ability to move and perform as 

needed is made possible by the energy flowing from 

the electric vehicle's battery to the load. In order to 

obtain the necessary voltage conversion ratio when 

operating in boost mode, the duty cycle of the switch 

is controlled. Boost mode's essential formulae are as 

follows: 

 Voltage Conversion Ratio (Duty Cycle, D): D = 
1

1−(
𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

)
 

 Inductor Current (𝐼𝐿): Vout = 
𝑉𝑖𝑛

(1−𝐷)×𝐼𝐿
 

 Output Power (Pout): 𝑃𝑂𝑢𝑡  =  𝑉𝑜𝑢𝑡 × 𝐼𝐿  

 Efficiency (η): η = 
𝑃𝑂𝑢𝑡

𝑃𝑖𝑛
× 100% 

 
FIGURE 7. Bidirectional DC-DC converter configuration 

for Electric Vehicle Battery charging. 
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9.  DC-DC UNIDIRECTIONAL CONVERTER 

Power converters like the DC-DC unidirectional boost 

converter (fig.8) increase the input voltage above the 

output voltage. Power transmission lines are designed to 

carry electrical current in a single direction, often from a 

lower-voltage source to a higher-voltage demand. The 

basic layout of a boost converter mostly consists of an 

inductor, a switch (often a MOSFET), a diode, and an 

output capacitor. It is possible to store energy in the 

magnetic field by keeping the switch closed, which 

allows current to flow through the inductor. When the 

switch is opened, the inductor experiences a voltage 

induction across itself on the other side, allowing it to 

resist fluctuations in current flow. The voltage across the 

output capacitor is raised when this voltage is added to 

the input voltage. The forward-biased diode allows 

current to flow from the inductor to the output capacitor 

and load. You can precisely regulate the output voltage 

of the boost converter by controlling the duty cycle of the 

switch. It is common practice to use the unidirectional 

boost converter in power supply, LED driver, and 

renewable energy system contexts. When the load 

demands a higher input voltage than what is normally 

available, this kind of converter is used. 

 
Fig.8 DC-DC unidirectional boost converter 

 Output Voltage (𝑉𝑜𝑢𝑡): The output voltage of a boost 

converter can be calculated using the following 

formula: 

𝑉𝑜𝑢𝑡 =
𝑉𝑖𝑛

1−𝐷
  

Where Vin is the input voltage and D is the duty cycle of 

the converter. 

 Input Current (𝑰𝒊𝒏): The input current of the boost 

converter can be calculated as: 

𝐼𝑖𝑛 =
𝐼𝑜𝑢𝑡
1 − 𝐷

 

Where 𝐼𝑜𝑢𝑡  is the output current of the converter. 

 Output Current (𝑰𝒐𝒖𝒕): The output current of the 

boost converter can be approximated as: 𝐼𝑜𝑢𝑡 =
𝑃𝑜𝑢𝑡

𝑉𝑜𝑢𝑡
 

Where 𝑃𝑜𝑢𝑡  is the output power. 

 Efficiency (η): The efficiency of the boost converter 

can be calculated as the ratio of output power to 

input power:  

𝜂 =
𝑃𝑜𝑢𝑡
𝑃𝑖𝑛

× 100% 

Where Pin is the input power. 

 Inductor Current Ripple (Δ𝐼𝐿 ): The peak-to-peak 

ripple current flowing through the inductor can be 

approximated as:  

Δ𝐼𝐿 =
𝑉𝑖𝑛 × 𝐷 × 𝑇𝑜𝑛

𝐿
 

 where Ton is the on-time of the switching device and L 

is the inductance. 

 Output Voltage Ripple (Δ𝑉𝑜𝑢𝑡 ): The peak-to-peak 

ripple voltage at the output can be approximated as:  

Δ𝑉𝑜𝑢𝑡 =
𝑉𝑖𝑛 × 𝐷 × 𝑇𝑜𝑛

𝐶
 

Where C is the output capacitance. 

 

10. AC - DC BIDIRECTIONAL CONVERTER 

An intricate component of modern power networks, the 

AC-DC bidirectional converter is seen in figure 9. 

Essential because it allows for efficient and versatile 

control of power flow between alternating current (AC) 

and direct current (DC) grids. When functioning in the 

AC to DC mode, the converter also rectifies voltage. 

Powering it down to DC is a breeze, whether you're 

plugging it into the wall or using another AC source. 

Intricate control algorithms and semiconductors like 

diodes, thyristors, or IGBTs are required to change the 

voltage. These devices smooth down the AC current's 

waveform and convert it to DC. Beyond their 

rectification capabilities, bidirectional converters may 

also work in reverse mode, transforming DC power into 

AC. Applications like grid-tied renewable energy 

systems need this inversion, or conversion, from direct 

current to alternating current. In these setups, converting 

DC power from sources like solar panels or batteries to 

AC power is necessary for feeding it into the grid or 

powering AC loads. Bidirectional converters maximise 

system efficiency by allowing efficient conversion with 

minimum losses via clever regulation of semiconductor 

device switching. Furthermore, bidirectional converters 

have the advantage of bidirectional power flow, 

allowing energy to be transferred between AC and DC 

networks to suit the needs of the circumstance. Energy 
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storage systems and similar applications benefit greatly 

from this bidirectional capacity since it enables the 

storage of energy in batteries during periods of low 

demand and its subsequent discharge into the grid or 

conversion to alternating current power during periods 

of high demand. By allowing power to flow in both 

ways, these converters help stabilise the grid, integrate 

renewable energy sources, and make the system more 

resilient overall. Typically, modern power systems 

cannot function without AC-DC bidirectional 

converters. With their help, AC and DC sources may be 

seamlessly integrated, resulting in maximum efficiency, 

flexibility, and reliability. Electric vehicles, 

grid-connected power systems, renewable energy 

systems, and industrial power sources are just a few of 

the many uses for their versatility. Because of this, they 

play a significant role in building long-term, 

environmentally friendly energy infrastructure. 

 

 
Fig.9 configuration of a AC-DC Bidirectional Converter 

control  

Rectification operation 

Rectification Efficiency: A diode-based rectifier's 

rectification efficiency may be determined by comparing 

the DC output power to the AC input power, taking into 

account the forward voltage drop of the diode and any 

additional losses:  

 

𝑃𝐷𝐶 ⁡𝑜𝑢𝑡𝑝𝑢𝑡

𝑃𝐴𝐶 ⁡𝑖𝑛𝑝𝑢𝑡
× 100% 

Peak Voltage (𝑽𝑷𝒆𝒂𝒌): The rectified output waveform's 

peak voltage may be determined by:  

𝑉𝑃𝑒𝑎𝑘 = 𝑉𝑟𝑚𝑠 × √2 

Where 𝑉𝑟𝑚𝑠 is the root mean square (RMS) voltage of the 

AC input waveform. 

Peak-to-Peak Voltage (𝑽𝑷𝑷 ): In the rectified output 

waveform, the voltage between the two highest points is 

double the original peak: 

𝑉𝑃𝑃 = 2 × 𝑉𝑃𝑒𝑎𝑘  

Average DC Voltage ( 𝑽𝒂𝒗𝒈 ): The rectified output 

waveform's average DC voltage may be roughly 

calculated as follows: 

 𝑉𝑎𝑣𝑔 =
𝑉𝑃𝑒𝑎𝑘

𝜋
  

Ripple Voltage ( 𝑽𝒓𝒊𝒑𝒑𝒍𝒆 ): The DC output voltage 

variation, or ripple voltage, may be expressed as:  

𝑉𝑟𝑖𝑝𝑝𝑙𝑒 = 𝑉𝑃𝑒𝑎𝑘 − 𝑉𝑎𝑣𝑔  

Ripple Factor: The correlation coefficient, which 

measures the voltage ripple relative to the average DC 

voltage, may be determined by:  

 𝑅𝑖𝑝𝑝𝑙𝑒⁡𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑉𝑟𝑖𝑝𝑝𝑙𝑒

𝑉𝑎𝑣𝑔
× 100% 

Peak Current (𝐼𝑃𝑒𝑎𝑘): The formula for determining the 

maximum current passing through the load resistance is:  

𝐼𝑃𝑒𝑎𝑘 =
𝑉𝑃𝑒𝑎𝑘
𝑅

 

Where R is the load resistance. 

 Inversion operation 

A measure of an inverter's effectiveness in transforming 

DC input power into AC output power is the inversion 

efficiency (η). In order to determine it, one must take into 

account losses and compare the AC output power to the 

DC input power.  

 Inversion Efficiency (η)=⁡
𝑃𝐴𝐶⁡𝑜𝑢𝑡𝑝𝑢𝑡

𝑃𝐷𝑐⁡input
×100%  

Where 𝑃𝐴𝐶  output is the power delivered to the load by 

the inverter in the form of AC voltage and current, and 

𝑃𝐷𝐶  input is the power supplied to the inverter from the 

DC source. 

AC Power Output (𝑷𝑨𝑪 ): The inverter's AC power 

output is determined by multiplying the output AC 

waveform's root-mean-square (RMS) voltage and 

current:  

𝑃𝐴𝐶 = 𝑉𝑟𝑚𝑠 × 𝐼𝑟𝑚𝑠 

DC Power Input (𝑷𝑨𝑪 ): The inverter receives its DC 

power from the voltage and current multiplied by the 

DC input:  

𝑃𝐷𝐶 = 𝑉𝐷𝐶 × 𝐼𝐷𝐶  

Power Losses (𝑷𝒍𝒐𝒔𝒔 ): Various inverter power losses, 

including as switching losses and conduction losses, 

may be determined by subtracting the DC input power 

from the AC output power:  

𝑃𝑙𝑜𝑠𝑠 = 𝑃𝐷𝐶 − 𝑃𝐴𝐶  

Efficiency Losses: 
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The inverter's efficiency losses, which are the 

discrepancy between the ideal and real inversion 

efficiencies, may be expressed as: 

Efficiency Losses=100%−𝜂 

 

11. NEURAL NETWORK MODEL: 

For a single-input, single-output (SISO) control system, 

let: 

 x(t) be the input at time t, 

 u(t) be the control output at time t, 

 y(t) be the actual output of the system at time t. 

The neural network consists of an input layer, a hidden 

layer, and an output layer. Let: 

 wij be the weight connecting the i-th node in the 

input layer to the j-th node in the hidden layer, 

 vj be the bias of the j-th node in the hidden layer, 

 zj(t) be the output of the j-th node in the hidden 

layer. 

Similarly, let: 

 bk be the bias of the k-th node in the output layer, 

 wjk be the weight connecting the j-th node in the 

hidden layer to the k-th node in the output layer, 

 yk(t) be the output of the k-th node in the output 

layer. 

Forward Pass Equations: 

The forward pass of the neural network can be expressed 

as follows: 

Hidden Layer Output (zj(t)): 

𝑧𝑗(𝑡) = 𝜎(𝛴𝑖𝑤𝑖𝑗 ⋅ 𝑥(𝑡) + 𝑣𝑗)  

Where σ is the activation function (e.g., sigmoid, tanh, 

ReLU). 

Output Layer Output (yk(t)): 

𝑦𝑘(𝑡) = 𝛴𝑗𝑤𝑗𝑘 ⋅ 𝑧𝑗(𝑡) + 𝑏𝑘  

Training and Backpropagation: 

During training, the weights and biases are adjusted to 

minimize a chosen loss function L. One common loss 

function for regression problems is the mean squared 

error: 

𝐿 =
1

2𝑁
∑ (𝑦(𝑡) − 𝑢(𝑡))

2𝑁

𝑡=1
  

To find the loss function's gradients with regard to the 

biases and weights, the backpropagation technique is 

used. Next, optimisation methods like gradient descent 

are used to update the biases and weights. The function 

that determines how the weights of the hidden layer wij 

are updated is: 

Δ𝑤𝑖𝑗 = −𝜂
∂𝐿

∂𝑤𝑖𝑗
  

Where η is the learning rate. 

In the backpropagation process, the partial derivatives 

are computed using the chain rule.  

This is only a simplified version; in practice, other factors 

like optimisation tactics, activation functions, and 

regularisation methods may be more important. The 

qualities of the control algorithm and the control issue 

dictate which of these components are chosen in 

particular. 

 

Fig. 10 Design of a backpropagation network to provide 

a standard reference signal. 

 

12. RESULTS AND DISCUSSION  

A. Integration of Grid and Renewable Energy for Electric 

Vehicle Charging Using MPIT with ANN Control 

The simulation results for the enhanced integration of 

solar and wind renewable energy for electric vehicle 

(EV) charging using a multi-port integrated topology 

with ANN control demonstrate a dynamic and highly 

efficient system capable of adapting to various energy 

source conditions as shown in figure .11. The simulation 

is divided into specific time intervals, each representing 

different combinations of energy sources contributing to 

EV charging and grid interaction. From 0 to 0.3 seconds, 

the system relies entirely on grid power to charge the 

EV. During this period, grid-to-vehicle (G2V) operation 

ensures that the EV receives a stable and reliable power 

supply despite the absence of renewable energy 

contributions. The ANN controller effectively manages 

the power flow to maintain optimal charging rates and 

power quality. Between 0.3 and 0.7 seconds, both grid 

and wind power are utilized to charge the EV. In this 
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Grid and Wind to vehicle scenario, the system 

dynamically adjusts to incorporate wind energy as it 

becomes available, thereby reducing the dependency on 

grid power and enhancing the overall efficiency of the 

charging process. The ANN controller continuously 

monitors and balances the power inputs to ensure a 

seamless integration and consistent charging 

performance. From 0.7 to 1.2 seconds, the system 

transitions to using both wind and photovoltaic (PV) 

solar power for EV charging. In the Wind and PV to 

vehicle condition, the ANN controller maximizes the 

utilization of renewable energy sources, minimizing grid 

power usage. This period highlights the system’s 

capability to leverage multiple renewable inputs to 

maintain effective and eco-friendly charging operations. 

Between 1.2 and 1.5 seconds, the system operates in the 

Wind and PV to grid mode. During this interval, excess 

energy generated from wind and solar sources is fed 

back into the grid. This not only contributes to grid 

stability but also optimizes the use of renewable energy, 

preventing waste and potentially generating economic 

benefits through energy credits. From 1.5 to 2 seconds, 

the system operates in the Vehicle-to-Grid (V2G) mode. 

In this condition, the energy stored in the EV batteries is 

transferred back to the grid. This operation supports grid 

stability during peak demand periods or when 

renewable energy generation is insufficient. The ANN 

controller manages the discharge process to ensure that 

it does not adversely affect the EV’s operational 

readiness while providing valuable support to the grid. 

The simulation results illustrate the versatility and 

efficiency of the multi-port integrated topology with 

ANN control. The system effectively manages 

transitions between different energy sources and 

operational modes, ensuring reliable EV charging and 

optimal utilization of renewable energy. By dynamically 

adjusting to varying conditions, the system not only 

enhances the sustainability of EV charging but also 

contributes to grid stability and resilience. 

 

 

 

 

Figure.11Simulation Results for Grid Integration of 

Renewable Energy for Electric Vehicle Charging Using 

Multi-Port Integrated Topology with ANN Control. 

 

B. G2V and V2G Operation Modes 

a. Grid-to-Vehicle (G2V) Condition. 

During the Grid-to-Vehicle condition, the voltage and 

current waveforms of the grid exhibit an in-phase 

relationship. This alignment signifies the efficient 

transfer of power from the grid to the electric vehicle's 

charging system. As the vehicle draws power from the 

grid for charging, the voltage and current supplied by 

the grid remain synchronized, ensuring optimal 

utilization of grid resources. The simulation captures this 

behavior accurately, illustrating the smooth and 

synchronous flow of energy from the grid to the electric 

vehicle. 

b. Vehicle-to-Grid (V2G) Condition. 

In contrast, during the Vehicle-to-Grid condition, the 

voltage and current waveforms of the grid demonstrate 

an out-of-phase relationship. This asynchronous 

behavior occurs when the electric vehicle's battery 

transfers power back to the grid. As the vehicle supplies 

excess energy to the grid, the voltage and current 

waveforms exhibit a phase shift, indicating the reverse 

flow of energy. Despite the bidirectional nature of the 

power transfer, the simulation ensures that the grid 

operates efficiently even when receiving power from the 

electric vehicle. By accurately modeling the phase 

relationship between voltage and current, the simulation 

provides valuable insights into the dynamic interaction 

between the grid and electric vehicle during V2G 

operation. Through detailed simulation analysis, the 

behavior of the grid and electric vehicle under different 
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operating conditions, including G2V and V2G scenarios, 

has been thoroughly examined. The simulation results 

demonstrate the effectiveness of the integrated system in 

facilitating bidirectional power flow between the grid 

and electric vehicle, ensuring efficient charging and 

discharging operations. By accurately capturing the 

voltage and current waveforms and their phase 

relationships, the simulation provides valuable insights 

for optimizing the performance of renewable 

energy-integrated electric vehicle charging systems. 

Figure.12. Simulation Results for Grid-to-Vehicle (G2V) 

and Vehicle-to-Grid (V2G) Conditions. 

 

13. CONCLUSIONS 

 The integration of solar and wind renewable energy for 

electric vehicle (EV) charging using a multi-port 

integrated topology with artificial neural network 

(ANN) control is a significant advancement in 

sustainable transportation and renewable energy 

utilization. This system reduces dependence on 

traditional fossil fuels, contributing to environmental 

sustainability and mitigating greenhouse gas emissions. 

The multi-port integrated topology allows for 

simultaneous connection and management of solar 

panels, wind turbines, EV charging stations, and the 

electrical grid, ensuring efficient power flow 

management while maintaining grid stability and 

reliability. The integration of multiple ports provides 

flexibility and resilience, allowing for seamless 

adaptation to varying environmental conditions and 

energy demand patterns. ANN control algorithms 

enhance the system's performance and efficiency by 

optimizing power flow, managing energy storage, and 

coordinating charging operations. Artificial neural 

networks can learn and adapt to changing conditions, 

allowing intelligent decision-making and real-time 

adjustments to maximize energy utilization and 

minimize wastage. This system offers a cost-effective, 

environmentally friendly, and technologically advanced 

approach to electric mobility, with immense potential for 

shaping a cleaner, greener, and more sustainable future. 
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