

37 International Journal for Modern Trends in Science and Technology

As per UGC guidelines an electronic bar code is provided to seure your paper

International Journal for Modern Trends in Science and Technology
Volume 10, Issue 04, pages 37-40.

ISSN: 2455-3778 online

Available online at: http://www.ijmtst.com/vol10issue04.html
DOI: https://doi.org/10.46501/IJMTST1004006

Design and Implementation of High Speed Adders

using Fast Fourier Transform

S Aruna kumari1, S Gunavardhini2, Shusitha Mucherla2, V kamalnadh2, T Vinod Sahu2

1Assistant Professor, Raghu Engineering college (A), Visakhapatnam, India.
2Raghu Engineering college (A), Visakhapatnam. India.

To Cite this Article

S Aruna kumari, S Gunavardhini, Shusitha Mucherla, V kamalnadh, T Vinod Sahu, Design and Implementation of

High Speed Adders using Fast Fourier Transform, International Journal for Modern Trends in Science and

Technology, 2024, 10(04), pages. 37-40.https://doi.org/10.46501/IJMTST1004006

Article Info

Received: 18 March 2024; Accepted: 03 April 2024; Published: 04 April 2024.

Copyright © S Aruna kumari et al;. This is an open access article distributed under the Creative Commons

Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

 Fourier Transform (FFT) is an important signal processing technique widely used in various applications, such as audio and

image processing, telecommunications, and scientific computing [1]. Many electronic applications require the best FFT with the

least area, low power consumption, high speed. To design an FFT, a multiplier and adder are required. To perform multiplication,

adder is the important block. So, if addition is done faster, FFT also work faster. The working of various adders like ripple-carry

adder, Sklansky adder, Kogge-Stone adder, and Brent-Kung adder is described in this thesis. By using these various adders

working of FFT is also described in this thesis. The ripple-carry adder, Sklansky adder, Kogge-Stone adder, and Brent-Kung adder

are implemented in Verilog using Cadence tools. By using these various adders, FFT using RCA, FFT using Sklansky adder, FFT

using Kogge-Stone adder, and FFT using Brent-Kung adders are implemented in Verilog using Cadence tools. The performance of

various FFT’s is compared in terms of cell count, power, and delay.

KEYWORDS: FFT, RCA, Sklansky adder, Kogge-stone adder.

1. INTRODUCTION

The Fast Fourier Transform (FFT) is a mathematical

algorithm used to compute the Discrete Fourier

Transform (DFT) of a sequence of data in a faster and

more efficient way than traditional methods. The DFT is

a mathematical technique that transforms a signal from

the time domain to the frequency domain. The FFT uses

a divide-and-conquer approach to break down the DFT

into smaller problems, which are solved recursively and

combined to produce the final DFT output. It has found

extensive applications in signal processing, image

processing, audio processing, and communications. By

using the FFT, the signals and data to extract valuable

information such as frequency content and spectral

characteristics can be analyzed. The FFT has become an

essential tool in modern technology and is crucial for

professionals working in fields related to signal

processing and analysis.

A parallel prefix adder, also known as a carry-look

ahead adder, is a digital circuit used to add two or more

binary numbers in parallel. The principle of a parallel

prefix adder is based on the concept of carry

ABSTRACT

http://www.ijmtst.com/vol10issue04.html
https://doi.org/10.46501/IJMTST1004006
https://doi.org/10.46501/IJMTST1004006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.ijmtst.com

38 International Journal for Modern Trends in Science and Technology

propagation. The carry propagate function (P) and the

carry generate function (G) are two important functions

used in the design of parallel prefix adders. These

functions are used to generate the carry signals that are

required to add two binary numbers in parallel.

Literature Survey:

1. S. K.C, S. M., G. B.C., L. D.M., Navya and P. N.V, in

their paper "Performance Analysis of Parallel Prefix

Adder for Datapath VLSI Design," described about

four types of Parallel prefix adders (PPA), Sklansky

adder, Kogge-Stone adder, Brent-Kung adder and

Ladner-Fischer adder, and their performance analysis

of PPA considered on area, delay and power

consumption and simulation for 8-bit input data

width. [1]

2. S. Daphni and K. S. V. Grace, in their article described

about the design and analysis of various parallel

prefix adders (PPA) and compared the performances

of these adders on the aspects of area, delay, and

power. They also described that the Kogge stone

adder (KSA) is preferable for the delay process,

increasing the speed of addition automatically. Yet, it

requires more space and power. [2]

3. U Penchalaiah and Siva Kumar VG, in their article,

described about the design and developed a new PPA

architecture, namely the Kogge Stone Adder (KSA)

for 8, 16, 32, and 64-bit addition. They also described

on the implementation and the results were

compared with CSKA in terms of area, delay, speed,

and power consumption. [3]

4. Sudheer Kumar Yezerla and B. Rajendra Naik, in

their article, implemented all adders in Verilog

Hardware Description Language (HDL) using Xilinx

Integrated Software Environment (ISE) 13.2 Design

Suite, and described on the delay measures using a

logic analyzer for all these adders' delay, power, and

area. [4]

5. Aradhanan Raju and Sudhir Kumar Sa, in their

article, choose to implement the fastest PPA, i.e.,

KSA, to get a comparative idea about the

performance of four different multipliers, namely, the

binary multiplier, the Braun multiplier, the Vedic

multiplier, and the Baugh Wooley multiplier, based

on the better adder of their area, delay, and power. [5]

Existing Method:

The parallel prefix adder operates by dividing the binary

numbers into groups of bits, and then processing each

group in parallel. The carry signals generated by the P

and G functions are used to compute the final sum. In

pre-processing stage, generate and propagate logic are

included. This generate and propagate logic can be

defined as Propagate/generate generator. The propagate

generator XORs the input bits together to determine if

this bit position propagates a previous carry. The result

of the propagate generator is used directly in generating

the sum bits. The generate generator ANDs input bits

together in order to determine if this bit position will

generate a new carry. The standard XOR and gates used

are the same as in the boolean unit. In carry generation

stage two logics namely black cell logic and grey cell

logic are responsible to obtain the desired output. Both

black cell and grey cell have same AND OR gate

configuration

Proposed Design:

Fig: Parallel Prefix Adder Mechanism

Carry generation stage works by creating two

signals (p and g) for each bit position, based on if a carry

is propagated through from a less significant bit position

(at least one input is a '1'), a carry is generated in that bit

position (both inputs are '1'), or if a carry is killed in that

bit position (both inputs are '0'). In most cases, p is

simply the sum output of a half-adder and g is the carry

output of the same adder. After p and g are generated

the carries for every bit position are created. This

permits the adders to work simultaneously.

The Sklansky adder operates by subdividing the

binary addition problem into smaller problems that can

each be resolved on its own. Instead of doing the

addition in order, the adder does it in parallel using a

structure like a tree. The Sklansky adder computes a new

carry bit at each level of the tree using the input bits and

39 International Journal for Modern Trends in Science and Technology

carry bits from the level before. The following level of

carries are then computed using this carry bit, and so on

up the tree until the last carry bit is computed. The

carriers and the sum bits are computed simultaneously.

The Sklansky adder has a time complexity of O(log n),

providing a speedup compared to a ripple carry adder,

which has a time complexity of O(n), when adding

multiple bits in parallel. Where n is the total number of

bits being added.

Fig: Algorithm for 8-bit Sklansky Adder

Another kind of parallel prefix adder is the Kogge-Stone

adder, also called a ripple-carry tree adder. The

Kogge-Stone adder uses a tree-like structure, just like the

Sklansky adder does, to carry out binary addition in

parallel. The Kogge-Stone adder, as opposed to the

Sklansky adder, propagates the carry bits across the tree

using a ripple-carry method. The Kogge-Stone adder

operates by grouping the input bits and parallelizing the

carry bit computations for each group. The carry bits for

each group are then used to calculate the carry bits for

the following group, and so on up the tree until the last

carry bit is calculated. The sum bits are also computed in

parallel. Similar to the Sklansky adder, the Kogge-Stone

adder has an O (log n) time complexity.

Fig: Algorithm for 8-bit Kogge-stone Adder

The Brent-Kung adder is a different kind of parallel

prefix adder. It is similar to the Sklansky and

Kogge-Stone adders which uses a tree-like structure to

conduct binary addition in parallel. The carry bits for

each group are simultaneously computed by the

Brent-Kung adder after grouping the input bits. The

Brent-Kung adder, on the other hand, combines both a

ripple-carry mechanism and a carry-look ahead

mechanism. The Brent-Kung adder uses a ripple-carry

mechanism to calculate a partial sum and a partial carry

at each level of the tree.

Fig: Algorithm for 8-bit Brent-Kung Adder

Simulation Results:

Fig: RTL Schematic of Sklansky Adder

Fig: Comparison Table for various adders using FFT C

CONCLUSION:

Implemented various adders like Ripple Carry adder,

Sklansky adder, Brent Kung adder and Kogge-Stone

adder using Verilog. By using these various adders, FFT

was implemented using Ripple carry adder, Sklansky

adder, Brent-Kung adder and Kogge-Stone adder in

Verilog using Cadence tools. Performance of this FFT

using various adders is analyzed in terms of power,

delay and cell count. The delay offered by FFT using

RCA is more than the other adders since the RCA uses

40 International Journal for Modern Trends in Science and Technology

individual full adders for every bit computation. The

FFT using Kogge-Stone adder and FFT using Sklansky

adder have better performance than ripple carry adder.

FFT with Brent-Kung adder is having a minimal delay

than Ripple carry adder, Sklansky adder and

Kogge-Stone adder. Also, Power Delay Product of FFT

using Brent-Kung adder is least among the designed

implementations. So, FFT using Brent-Kung Adder is the

most effective implementation which can be used for

various designs in signal processing and

communications.

Conflict of interest statement

Authors declare that they do not have any conflict of

interest.

REFERENCES

[1] S. K.C., S. M., G. B.C., L. D.M., Navya and P. N.V., "Performance

Analysis of Parallel Prefix Adder for Datapath VLSI Design," 2018

Second International Conference on Inventive Communication

and Computational Technologies (ICICCT), Coimbatore, India,

2018, pp. 1552-1555.

[2] S. Daphni and K. S. V. Grace, "A review analysis of parallel prefix

adders for better performance in VLSI applications," 2017 IEEE

International Conference on Circuits and Systems (ICCS),

Thiruvananthapuram, India, 2017, pp. 103-106.

[3] U. Penchalaiah and S. K. VG, "Design of High-Speed and

Energy-Efficient Parallel Prefix Kogge Stone Adder," 2018 IEEE

International Conference on System, Computation, Automation

and Networking (ICSCA), Pondicherry, India, 2018, pp. 1-7.

[4] S. K. Yezerla and B. Rajendra Naik, "Design and estimation of delay,

power and area for Parallel prefix adders," 2014 Recent Advances in

Engineering and Computational Sciences (RAECS), Chandigarh,

India, 2014, pp. 1-6.

[5] A. Raju and S. K. Sa, "Design and performance analysis of multipliers

using Kogge Stone Adder," 2017 3rd International Conference on

Applied and Theoretical Computing and Communication

Technology (ICATCCT), Tumkur, India, 2017, pp. 94-99.

[6] A. Prasath A.M., R. V. Arjun, K. Deepaknath and K. Gayathree,

"Implementation of optimized digital filter using sklansky adder and

kogge stone adder," 2020 6th International Conference on Advanced

Computing and Communication Systems (ICACCS), Coimbatore,

India, 2020, pp. 661-664.

[7] A. N. Borodzhieva, "Implementation of Kogge-Stone Adders Using

Computer-Based Tools," 2022 21st International Symposium

INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and

Herzegovina, 2022, pp. 1-6.

[8] N. U. Kumar, K. B. Sindhuri, K. D. Teja and D. S. Satish,

"Implementation and comparison of VLSI architectures of 16-bit carry

select adder using Brent Kung adder," 2017 Innovations in Power and

Advanced Computing Technologies (i-PACT), Vellore, India,

2017, pp. 1-7.

[9] M. A. A. Amin, M. Kartiwi, M. Yaacob, E. A. Z. Hamidi, T. S.

Gunawan and N. Ismail, "Design of Brent Kung Prefix Form Carry

Look Ahead Adder," 2022 8th International Conference on Wireless

and Telematics (ICWT), Yogyakarta, Indonesia, 2022, pp. 1-6.

[10] Ma Cuimei, H. Chen and Ma Long, "An efficient design of

high-accuracy and low-cost FFT," IET International Radar

Conference 2013, Xi'an, 2013, pp. 1-4.

[11] Xing Sun, Dongli Qiu, He Chen and Dong Chen, "An

implementation of FFT processor," IET International Radar

Conference 2013, Xi'an, 2013, pp. 1-4.

[12] B. R. Manuel, E. Konguvel and M. Kannan, "An area efficient high

speed optimized FFT algorithm," 2017 Fourth International

Conference on Signal Processing, Communication and

Networking (ICSCN), Chennai, India, 2017, pp. 1-5.

