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  The rapid proliferation of photovoltaic (PV) systems in the power grid has underscored the critical importance of effective 

islanding detection mechanisms to ensure safety, reliability, and compliance with grid standards. Islanding occurs when a 

portion of the grid operates in isolation from the main power supply, potentially posing risks to equipment and personnel. 

Traditional detection methods often struggle with detection speed and accuracy, particularly under non-ideal conditions.A 

hybrid model combining the strengths of machine learning algorithms and signal processing techniques to enhance the sensitivity 

and specificity of islanding detection. The model employs a two-stage process: the initial stage uses signal characteristics 

extracted from the PV system's output to generate preliminary detection signals. These signals are then analyzed by a deep 

learning algorithm, specifically a convolutional neural network (CNN), trained on a comprehensive dataset representing a wide 

range of islanding and non-islanding scenarios, including various load and generation balances, to make the final determination. 

This study introduces a novel approach to islanding detection in PV systems, leveraging the capabilities of artificial intelligence 

(AI) techniques, analyzed and validated using MATLAB software. 

 

KEYWORDS: Islanding Detection, Photovoltaic Systems, Artificial Intelligence, Machine Learning, Deep Learning, MATLAB, 

Grid Safety, Renewable Energy Integration. 

1. INTRODUCTION 

Islanding detection is one of the most critical issues 

considered in any distributed energy resource (DER). 

Islanding occurs when a part of the distribution system 

becomes isolated from the main supply. If islanding is 

detected, the DER should be tripped out. Typically, a 

DER should be disconnected within 0.1-2 seconds after 

the loss of the main supply [1-3]. If the islanding is failed 

to detect, the islanding may lead to power inequality 

issues and safety issues for machines and humans. 

Different techniques are presented in the literature for 

these purposes. These techniques can be broadly divided 

into remote and local techniques. Remote techniques are 

associated with islanding detection on the supply side 
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and the local on the DER side. In remote techniques, 

communication is needed to send a trip signal to the 

DER when the islanding is detected. Furthermore, Local 

algorithms divide into passive, active, and hybrid 

methods. 

The main philosophy of the local techniques is based on 

monitoring the output of the DER and detecting the 

status of the main supply. This monitoring may base on 

output power, voltage, frequency, current, etc. If the 

external source (auxiliary) injects current, power, 

harmonic…. to the system, in parallel with the 

monitoring, the technique is called active techniques, 

otherwise it is called passive technique. 

Some of the remote detection techniques presented in the 

literate are based on the transfer scheme trip and power 

line signaling scheme. The concept of the transfer trip 

scheme is based on monitoring all breaker status and 

sent a trip signal to the DER if the islanding is detected. 

Supervisory control and data acquisition (SCADA) [4], 

or wide-area monitoring system (WAMS) [5-6] are used 

as remote IDM. The signal is continuously generated at 

the transmission side in the signaling technique, and the 

DER has a receiver to detect this signal. In these 

techniques, the islanding status is proved if the DER 

does not receive any signal [7-9]. A high-frequency 

impedance estimation-based technique is an example of 

active detection techniques [10]. In [10], the potential 

failure mechanism of the f-Q (frequency-reactive power) 

drifting is analyzed. Then, the researchers proposed a 

high-frequency transient injection-based islanding 

detection method. From the results of this paper, the 

high-frequency temporary injection method is better 

than the traditional injection method. Another researcher 

presents a detection method as an example of passive 

techniques in [11]. In [11], researchers using the Forced 

Helmholtz Oscillator to the signal at the point of 

common coupling. The dynamic characteristics of the 

synchronous generator and signal processing technique 

are presented in [12]. This paper proposes a hybrid 

islanding detection method for distribution systems 

containing synchronous distributed generation (SDG) 

based on two active and reactive power control loops 

and a signal processing technique. 

Other techniques based on artificial neural network are 

presented in [13-15]. In [13], the proposed artificial 

neural network (ANN) employs minimal features of the 

power system. The performance comparison between 

stand-alone ANN, ANN- evolutionary programming, 

and ANN- particle swarm optimization in the form of 

regression value is performed. In [14], a new composite 

approach based on wavelet-transform and ANN for 

islanding detection of distributed generation is 

presented. The wavelet transform is used to detect 

events, and then the artificial neural network (ANN) is 

used to classify islanding and non-islanding events. In 

[15], the S- transform is used to obtain the frequency 

spectrum at the terminals of the DER; then, the ANN is 

used to identify whether the event is islanding. Like 

other protection functions [16-18], WAMS and machine 

learning can be used to detect the islanding in the system 

and send a protection signal to the remote protective 

relays to prevent any mis operation. Still, it is expensive 

to apply and need a good communication infrastructure. 

 

2. ISLANDING DETECTION PRINCIPLES AND 

METHODS 

2.1. Islanding Operation in Distribution Grids 

Nowadays, there are three types of distribution 

grids: passive, active, and microgrid. Figure 1 displays 

part of the passive, 10 kV distribution grid. The direction 

of electric energy flow is from the transmission grid 

(where power plants are connected) through the 

distribution grid to consumers. Assume that a fault has 

occurred on the 10 kV transmission line connecting 

busbars W1 and W0 (the location of the fault is 

represented by the lightning symbol in Figure 1). Then, 

the protective device will activate the CB6 switch, and 

the faulted line will be switched off. Simultaneously, the 

local load (see Figure 1) will be disconnected and left 

without electricity until the faulted line is repaired. In 

passive grids, the occurrence of islanding operation is 

not possible. 

If the DGs (i.e., a photovoltaic PV and a synchronous 

generator GEN) are connected to bus W0, the passive 

grid becomes active—Figure 2. Bus W0 is now a point of 

common coupling (PCC) between the DGs and the 

distribution grid. Let us assume the same event as in the 

case of Figure 1, i.e., line fault and its disconnection. 

Even though the faulted line is disconnected from the 

rest of the distribution network (via CB6), the DGs can 

still supply the part of the network connected to the PCC 

and the faulted line. The protection schemes and devices 

need to be updated to ensure the disconnection of the 

faulted line (CB 7 needs to be installed and connected to 

https://www.mdpi.com/2076-3417/13/24/13047#fig_body_display_applsci-13-13047-f001
https://www.mdpi.com/2076-3417/13/24/13047#fig_body_display_applsci-13-13047-f001
https://www.mdpi.com/2076-3417/13/24/13047#fig_body_display_applsci-13-13047-f001


  

 

 
474     International Journal for Modern Trends in Science and Technology 

 

 

the protection device). Such a situation is an example of 

an islanding operation (or islanding), and in this case, 

islanding is unplanned and dangerous since the faulted 

line is energized; workers who want to repair the line 

may get hurt. Many scientific papers deal with 

protection coordination in distribution grids with DGs; 

some examples are [8,9]. However, when the faulted line 

is disconnected, part of the grid connected to PCC (see 

red circle in Figure 2) is still an unplanned island. To 

ensure the sustainability of the islanding operation 

within the grid island, the balance of active and reactive 

power between generation and consumption needs to be 

maintained, which requires regulation and flexibility of 

the DGs. Since the flexibility of some types of DG (i.e., 

PV and wind) is limited, it can lead to voltage 

(magnitude and angle) and frequency distortions [5]. 

Therefore, such an unplanned grid island must be 

quickly detected and eliminated (by shutting down all 

DGs in the grid island), which imposes the need for fast 

and efficient IDM. 

 
Figure 1. Passive distribution grid 

 

 
Figure 2. Active distribution grid 

The possibility of the planned islanding operation is part 

of the microgrid definition, so an additional device, such 

as an energy storage system, is needed (see Figure 3). 

When planned islanding operation in a microgrid is 

present, local load needs to be supplied in a reliable 

manner by the energy produced by DGs or by the energy 

stored in the energy storage system. Although 

microgrids can operate in both grid-connected and 

island mode, they mainly work in grid mode due to high 

costs. If an unplanned islanding operation of the 

microgrid occurs (i.e., due to the faults), it needs to be 

detected quickly, so effective IDM is also inevitable in 

the microgrid. 

 
Figure 3. An example of a microgrid. 
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Figure 4. Islanding detection method classification 

 

On the other hand, local methods detect islanding 

operations based on locally available devices and their 

measurements. In most cases, they do not require 

additional equipment cost, but their disadvantage is 

lower accuracy than remote methods. Local IDMs are 

further divided into three main groups: passive, active, 

and hybrid methods (Figure 4). 

 

3. ANN AND LEARNING TECHNIQUES 

Feed-Forward ANN structure ANN is a learning 

technique used in different areas for different 

purposes. The very widely used applications of ANN 

are classification applications. The main structure of 

the ANN is shown in Figure 1. 

 

Fig 5: General feedforward ANN structure 

 

In general, ANN has three types of layers: an 

input layer has n neurons, hidden layer(s), and the 

output layer has m neurons. Where n and m are the 

number of inputs and outputs, respectively. The number 

of hidden layers and the neurons in each hidden layer is 

adjustable. The optimal number of layers needs more 

information about the problem to identify. For this 

study, the number of layers and neurons are selected 

based on experience; then, general formula to determine 

the number of neurons in each layer is proposed. Each 

neuron has an activation function, so the neurons’ 

output is a function of the sum of the inputs (net). 

Different activation functions are available to use. These 

activation functions may be divided into step, linear, and 

nonlinear functions in general. Other nonlinear functions 

are presented in the literature include sigmoid function, 

hyperbolic tangent function, rectified linear unit 

function, leaky rectified linear unit function, soft-max 

function, and switch function. Each of these functions 

has advantages and disadvantages. The selection of the 

activation function is based on the application. The 

sigmoid function is the most common. Each neuron in 

layer (i) connects with each neuron in layer (i+1) via a 

weight. The arrows in Figure 1 refer to the weights. 

The weights in the structure are defined by the learning 

technique based on the inputs/outputs samples. The 

training samples should represent the overall behavior. 

The output samples are called targets, where the outputs 

of the neural network are called outputs. The learning 

techniques are mainly optimization techniques. The cost 

function of the methods is to minimize the sum of the 

absolute (square) error between the output and the 

target. Once the outputs and the targets are very close 

together, the learning is done. The backpropagation 

learning technique is very commonly used in this 

context. The main disadvantage of this algorithm is the 

highest probability of sticking to a local solution. Based 

on this concept, any optimization algorithm (hard or soft 

computational techniques) can be used to solve this 

optimization problem. In this paper, two soft 

computational methods: Genetic algorithm (GA) and 

cuckoo algorithm (CA) and one hard computational 

technique (backpropagation), are used and then 

compared 

 

Genetic Algorithm. 

Genetic algorithm (GA) is one of the very widely 

used techniques in optimization problems. This 

algorithm is based on the concept of human gene 
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behavior. Firstly, a considerable population generated 

randomly has a specific number of randomly proposed 

solutions. Each solution is called a gene. The behavior of 

these genes is getting from the cost function (the value of 

the cost function at a specific solution ‘chromosome’). If 

the problem is to maximize, the chromosomes with the 

highest values have the best performance and vice versa. 

From the first iteration, the chromosome which has 

better performance is selected, then these chromosomes 

will be mated to get a new population. The mating is 

similar to human mating, but for variable cross-over, so 

the latest population performs better than the old one. 

This procedure will repeat more and more to get the 

specific cost function. The mutation idea is created to 

prevent any predicted local solution. In the mutation 

process, the genes in the chromosomes are changed 

randomly. This simple step is used to add noise to the 

signal, which will help the algorithm to go over any local 

solution. 

Proposed ANN Structure. 

In this paper, three different systems are 

designed: Power-based system, voltage-based system, 

and current-based system. Five different sampling rates 

are tested: 400 Hz, 800 Hz, 1600 Hz, 3200 Hz, and 6400 

Hz (8, 16, 32, and 64 per cycle). A complete cycle is 

considered as a data window. So, in a 400 Hz sampling, 

the system has eight inputs and a single output. 

The number of layers in each system (400, 800, 

1600, 3200, 6400) is selected due to Equation (1). The 

number of neurons in each hidden layer is defined by 

Equation (2). These equations are based on experience in 

the classification application. These equations may be 

used in other classification applications to identify the 

optimal number of the layers and neurons 

 

Where, 𝑁i: number of neurons in hidden layer 

number i. Two biases are added to the structure: input 

and output biases (independent neurons have constant 

output ‘1’). Figure 2 shows the design of the 800 Hz 

system. Based on previous equations, the number of 

hidden layers for 16 inputs and one output equals 3. The 

numbers of neurons are (8, 4, 2) per each layer, 

respectively. In this example, the number of weights 

(size of the optimization techniques) = 51. Generally, the 

number of weights (𝑁w) is given by Equation (3), where 

𝑁h is the number of the hidden layer. 

 
 

The sigmoid function is selected as an activation 

function of all neurons in this paper. In Figure 2, the 

green cycles refer to inputs, grey cycles refer to the 

neurons in hidden layers, red cycles refer to the output 

neuron, and white cycles refer to biases. Each simulation 

cycle is used as a sample in the training phase, either 

with the islanding status or non-islanding status. For 

each data rate, there is a specific number of inputs. In the 

simulation phase, the algorithm uses several cycles to 

decide either the system is islanding or not. The number 

of cycles depends on the sample rates used. The higher 

the sample rate, the better the accuracy. 

 

Fig 6: ANN structure, for an example of sample rate 

equal to 800 Hz 

System Understudy. 
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Different sample rates are considered in this 

section: 0.4, 0.8, 1.6, and 3.2 KHz. Figure 3 shows the 

simulation system. Three scenarios are covered here: 

increase the load to its double value, decrease load to its 

half value, and trip main supply. Ten cycles are covered 

for each scenario (five cycles before the event and five 

cycles after the event). So for each load level, 30 samples 

are generated (10 samples for load up event, 10 samples 

for load down event and 10 for the islanding event). Two 

data sets are generated at different load levels: test data 

used in training systems and validation data used in 

simulation systems. Different load levels are covered 

from 0.2 Pu to 2 Pu stepped by 0.1 Pu for the training 

data set and from 0.25 to 1.95 stepped by 0.1 for the 

validation data set. The size of the test data for the 0.8 

kHz system is 600×16. Figure 4 shows the sampling 

technique. Then these inputs are normalized. Figure 5 

shows the Simulink model for the system. 

4. SIMULATION RESULTS: 

Fig. 5 depicts the single-line diagram of a utility grid 

rated 120 kV at 60 Hz, which has a 120 kV transmission 

line connected to 120–25 kV, 47MVA transformer to feed 

25 kV distribution feeders with a length of 19 km. A 

100-kW solar photovoltaic (PV) array is connected to the 

system at the PCC through a 100 kVA, 0.26 kV/25 kV 

three-phase transformer and a circuit breaker. The 

100-kW PV array, the threephase transformer, and the 

100kVA three phase load form a microgrid as shown in 

Fig. 5. Fig. 6 depicts the model of the system in 

MATLAB-SIMSCAPE. The figure shows the detailed 

model of the 100kW Grid-Connected PV Array (R-DER), 

which consists of 100 kW photovoltaic (PV) array, a 

dc-dc boost converter, a Voltage Source Converter 

(VSC), and the Maximum Power Point Tracking (MPPT) 

controller. The PV array consists of 330 SunPower 

modules, where 66 strings of 5 series-connected modules 

are connected in parallel to deliver a maximum power of 

100.7 kW (66 strings × 5 modules × 305.2 W/module) and 

273.5 V (5 modules × 54.7 V/module) at a standard test 

conditions (STC) of 1000W/m2 solar irradiance, 25 ◦C PV 

module temperature. Table 1 lists a summary of the PV 

system characteristics at the STC. The 5-kHz dc-dc boost 

converter is used at the output of the PV array to boost 

dc voltage to 500 V. The MPPT is implemented in the 

boost converter using a MPPT variant subsystem DC-DC 

MPPT Boost Control that automatically varies and 

optimizes the switching duty cycle to generate the 

required voltage to extract the maximum power using 

the State flow implementations of the incremental 

conductance algorithms [36]. A 1.98 kHz three-level 

three-phase VSC as shown in Fig. 7, converts the 

500VDC to 260VACand maintains unity power factor. A 

filter that contains the 25 μH inductor (L) and the 

10kVAr capacitor bank (C) is used to filter the 

 

Simulink blocks of the system under study 

 

 

Islanding detection for Photovoltaic (PV) systems is a 

critical safety mechanism. It refers to the ability of the 

system to detect when the grid has become disconnected. 

An "island" occurs when a portion of the grid continues 

to power itself even though it is no longer connected to 
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the wider power system. This can pose serious safety 

risks, as utility workers may not be aware that a line is 

still energized, and it can also lead to equipment 

damage. 

Traditional islanding detection methods rely on 

monitoring certain parameters, such as frequency, 

voltage, or phase within the PV system, and comparing 

them to the expected grid conditions. When these 

parameters deviate beyond a certain threshold, it is 

assumed that islanding has occurred. 

Artificial Intelligence (AI) techniques can enhance 

islanding detection by allowing the system to learn from 

a variety of conditions and potentially detect islanding 

more quickly and reliably. 

 

In the simulation scenario, an AI-driven Islanding 

Detection System (IDS) is integrated into a grid-tied 

Photovoltaic (PV) system to ensure rapid and accurate 

identification of islanding events. At the 5-second mark, 

the PV system experiences an islanding condition due to 

a sudden disconnection from the main power grid. The 

AI module, utilizing a combination of supervised 

machine learning algorithms and real-time data 

analytics, begins to analyze the deviations in electrical 

parameters such as frequency, voltage, and phase angle. 

The system is trained with a vast dataset that includes 

normal operation, various fault conditions, and previous 

islanding occurrences to distinguish between legitimate 

grid fluctuations and actual islanding events. 

 

During the simulation, the IDS's neural network 

processes the incoming data streams, detecting 

anomalies that match the learned islanding signatures. 

The AI's pattern recognition capability allows for a swift 

response, and within milliseconds, it confidently 

classifies the event as an islanding situation. The system 

then executes a series of predetermined actions, such as 

sending alerts to the grid operators and initiating 

protective measures like shutting down the PV inverters 

to prevent feeding power into an isolated segment of the 

grid, ensuring the safety of the maintenance personnel 

and preventing damage to the electrical infrastructure. 

This rapid detection and response highlight the 

effectiveness of AI techniques in enhancing the resilience 

and safety of PV systems within the smart grid 

environment. 

 

Fig : Frequency of the system 

 

 
Fig: Voltage and current at the PV side  

 

 
Fig: Voltage and current when the PV system is islanded 

from the grid  

 
Fig: Voltage and current at the Grid side 

 

5. CONCLUSION 

In this paper, the ANN-based technique in the 

islanding detection application is studied. Doubly fed 

induction generator wind turbine is selected as 

distributed generators. Different ANN systems are 

simulated based on various inputs: Phase 

voltage/current, neutral voltage/current, and three-phase 
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power, different sample rates are considered: 8, 16, 32, 

and 64 sample/cycle for each system, and three learning 

algorithms are simulated using MATLAB 2020a: 

Backpropagation, Genetic Algorithm, and Cuckoo 

optimization technique. 

From the results, the ANN is a very effective method to 

detect the islanding in the micro- grid. Different inputs 

may be used to feed the trained ANN system: Power, 

phase voltage, and phase current, where the neutral 

quantities (voltage, current) are not able to use in this 

application. The accuracy of the system depends on the 

sample rate. The higher the sampling, the better the 

performance. 16 sample/cycle is enough to detect the 

islanding within four cycles in the case of power-based 

input data. 
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