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 Electric freight vehicles provide numerous advantages in connected and automated environments, making them a preferred 

means of transportation. Nonetheless, the growing demand for transportation is not being fulfilled by connected and automated 

electric freight vehicles (CAEFVs), which have a restricted working range. This study employs wireless charging technologies to 

create a complex driving environment featuring metropolitan highways and dynamic wireless charging outlets. To develop a 

wireless charging strategy for urban transportation systems, a number of variable-scale variables, such as automobiles, roads, 

and the environment, are studied hierarchically. An efficient driving model for CAEFVs in wireless charging situations at 

signalized crossings is provided, combining scenario boundaries with vehicle dynamic constraints. The model's objectives are 

passage efficiency, energy consumption, and passenger comfort. This approach is separated into a time priority strategy (TPS), 

balance priority strategy (BPS), and charging priority strategy (CPS) in order to account for the various charging requirements of 

cars. 

 

Keywords: electric freight vehicle; wireless charging technology; optimal driving model; signalised intersection; market 

penetration rate; passing strategy. 

1. INTRODUCTION 

Rapid urbanization has brought about many benefits for 

people, but it has also resulted in major energy and 

environmental crises, gridlock in metropolitan surface 

transportation systems, and other problems [1,2]. It is a 

difficult undertaking for nations and the automobile 

industry to reduce pollutant emissions and increase the 

energy economy of freight vehicles [3,4]. 

As a result, many nations have expressed political 

support for and interest in the electrification of freight 

vehicles as a potential means of boosting energy 

efficiency, reducing carbon emissions, and attaining 

sustainable development [5-8].However, two significant 
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limitations influencing the adoption of electric freight 

vehicles (EFVs) are their limited operating range and 

lengthy charging times.Numerous studies on energy 

storage technologies and charging advances, such as 

battery storage upgrades [4,5], energy management 

optimization [5], high-power rapid charging , and 

driving strategies , have been carried out in an effort to 

address these problems. To sustainably meet the 

charging requirements of devices, a significant amount 

of charging infrastructure, including charging stations, 

battery swap stations, and wireless charging devices, has 

been constructed  

The results showed that the proposed approach can help 

to reduce the downtime and cost of garbage truck 

charging while also lowering the environmental effect of 

traditional collection procedures.Meintz et al. 

demonstrated the feasibility of using wireless power 

transfer technology to charge shuttle buses in enclosed 

environments. The study discovered that wireless 

power-transfer technology has significant advantages for 

improving the sustainability and efficiency of 

transportation services. Yang et al. proposed an efficient 

charging algorithm for wireless sensor networks that 

employs unmanned aerial vehicles for wireless power 

delivery. The suggested approach seeks to improve the 

charging efficiency of wireless sensor nodes while 

lowering the energy consumption of unmanned aerial 

vehicles. As a result, the sensible application of wireless 

charging technology, as well as connected and 

automated technologies, in conjunction with a wireless 

charging lane (WCL) , can significantly expand the 

driving range of connected and automated EFVs from a  

sustainable vehicle operation standpoint. Furthermore, 

unlike Charging while walking, as opposed to 

staticparking, can reduce driving anxiety, shorten 

parking and charging wait times, and improve the 

adoption of CAEFVs. 

Signalized crossroads are critical nodes of the urban 

surface transportation system, managing traffic flow, 

influencing the efficiency of safe passages, and reducing 

urban congestion. With the continuous improvement of 

intelligent driving systems consisting of 

vehicle-to-vehicle and vehicle-to-infrastructure 

technologies by installing devices such as the advanced 

driver assistance system, advanced emergency braking 

system, light detection and ranging, and global 

positioning system, vehicles can acquire more accurate 

and connected real-time data related to the 

driver-vehicle environment, enabling alerting, assistance, 

and intelligent decision-making. 

To achieve the dual objectives of optimal charging and 

passing benefits, a combination of signalized 

intersections located upstream and downstream of 

wireless charging facilities allows vehicles to pass 

through intersections at reduced speeds while 

replenishing power, increasing traffic efficiency and 

mileage. As a result, several energy-consumption 

models for electric cars (EVs) and EFVs, wireless 

charging, and eco-driving control have been investigated 

to meet the needs of vehicles operating in complicated 

situations. Improved current energy-consumption 

models for EVs and EFVs by integrating the 

energy-consumption functions of individual EVs for 

different phases into an aggregate energy-consumption 

model by simplifying the driving action of EVs at 

signalized crossings. Li et al.  employed the minimum 

principle theory to create novel EV car-following models 

with zero and non-zero initial states based on the 

optimal energy-consumption model. Numerical trials 

demonstrated the model's usefulness in terms of vehicle 

location, velocity, and acceleration distributions.Fiori et 

al. [2] investigated the efficiency of regenerative braking 

energy and the impact of auxiliary systems on vehicle 

energy consumption. They created an electric vehicle 

energy model that used different deceleration levels to 

calculate instantaneous regenerative braking energy and 

estimate electric vehicle energy consumption using 

vehicle speed, acceleration, and roadway grade as input 

variables. On this basis, Fiori and Marzano [3] proposed 

and validated a microscopic backward highly resolved 

power-based EFV energy consumption model 

(EFV-ECM) that uses vehicle speed, actual weight, 

roadway grade, and vehicle characteristics updated 

every second as input features combined with actual 

EFV driving data. Later, Fiori et al. [4] extended and 

validated the EFV-ECM by identifying model. 

     The most significant inputs influenced the variability 

of simulated energy use, resulting in typical or extreme 

model scenarios. The results showed that the EFV-ECM 

accurately reproduced the inherent uncertainty of 

energy-consumption measurements during real-world 

EFV driving. As a result, this study uses the EFV-ECM as 

an energy consumption model to calculate instantaneous 

power usage. He et al. [3] investigated the movement of 
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EVs in a WCL using a car-following model and 

lane-change rules, as well as the driving behavior of each 

EV in a two-lane system with a WCL and the influence of 

the WCL on EV mobility. He et al. [5] provided a new 

method for evaluating various energy-consumption 

models and calibrations to investigate the influence of 

WCL on EV travel time and energy consumption in a 

two-lane system. Li et al.  assessed the longitudinal 

safety of EVs equipped with a partial WCL on freeways 

using time-exposed and time-integrated time-to-collision 

as safety evaluation indicators.To improve eco-driving 

control, Zhao et al employed a model-predictive control 

technique to govern the trajectory of automated cars and 

suggested a real-time cooperative eco-driving control 

model for hybrid automated vehicles and human-driven 

vehicles approaching signalized crossings. Xin et al. [1] 

created an eco-driving model with a slowing strategy 

that took into account signal phase, timing, and vehicle 

state at signalized junctions. This model could direct 

vehicles through an intersection without stopping by 

analyzing the red and green light conditions at the 

signalized intersection and slowing them down ahead of 

time. Liao et al. [2] took into account the internal features 

of a powertrain and incorporated a battery temperature 

impact into a powertrain-based longitudinal dynamic 

model of EVs, employing a holistic approach to build 

optimal driving strategies. By this technique to regulate 

the trajectory of automated vehicles by merging 

eco-driving and traditional cooperative adaptive 

cruise-control technologies, Ma et al. [3] suggested an 

ecological cooperative adaptive cruise-control model 

that allows for energy optimization and multi-vehicle 

speed trajectory planning. 

  Sun et al. [4] employed motion wave and car-following 

models to create an eco-driving algorithm based on 

linked and automated technologies. The algorithm used 

accurately estimated the moment each vehicle entered a 

signalised intersection based on signal timing and 

vehicle speed. It then created an advisory speed limit 

approach for each automated vehicle to allow 

speed-controlled vehicles to enter the intersection at the 

scheduled time, so achieving the goal of reducing traffic 

fluctuations and improving traffic congestion. However, 

the eco-driving model outlined here did not take 

wireless charging scenarios into account. Table 1 

summarizes the aforementioned eco-driving-related 

works in the literature; the last row denotes the 

contribution made by this study. 

2.SCENARIO DESCRIPTION AND SCHEMATIC 

CAEFVs in the upstream area of signalized intersections 

can receive important state information in advance, 

including their positions, traffic signal phase status, and 

surrounding vehicle information, thanks to intelligent 

urban transportation systems, vehicle-to-vehicle, and 

vehicle-to-infrastructure technologies. Furthermore, the 

wireless charging scenario at signalized intersections 

(WCSSI) is made up of several scenario pieces, including 

automobiles, static environments, and dynamic 

environments. To hierarchically analyze a mix of 

automobiles, roads, and environmental components in a 

coupled scenario, a modified hierarchical model was 

employed for a scenario representation based on Menzel 

et al's research. [5]. In this model, scenarios are divided 

into basic components, and only the interactions 

between all five layers represent a complete scene. The 

five-layer model is used to construct the scene depicted 

in Figure 1a with the three lower layers describing its 

static parts. The fourth layer focuses on moving objects, 

while the fifth layer describes the environmental 

conditions and vehicle-to-everything communication. 

 

2.1. Energy Consumption and Wireless Charging 

Model for CAEFVs 

Because the vehicle speed and acceleration data can be 

easily obtained from the intelligent transportation 

system, this study uses a physical model proposed by 

Fiori et al. [3], 

which is a backward-structured EFV–ECM, to calculate 

the energy consumption of EVs. It utilises the 

instantaneous speed, acceleration, and road gradient as 

the input parameters and the the input parameters and 

the instantaneous power or energy consumption as the 

output and calculates the instantaneous energy 

consumption and power state of the vehicle by inputting 

the speed and acceleration data obtained every second. 

3.NUMERICAL STUDIES 

The effectiveness of the optimal driving model based on 

customised requirements was evaluated to assess the 

impacts of various key factors on the traffic benefits of 

CAEFVs in the WCSSI. The ability of vehicles to pass the 
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CA in mixed traffic with different market penetration 

rates (MPRs) was examined to verify the adaptability of 

the proposed model. The main simulation parameters, 

including the basic vehicle parameters [3]. 

3.1. Single-Vehicle Simulation with a 

Communication Delay 

To verify the effectiveness of the proposed model, a 

particle swarm optimisation algorithm [4] and 

regularisation method [1] were employed to compare 

the optimal driving model considering a communication 

delay with an unguided model (IDM) using the same 

initial state parameters. Based on the simulation 

parameters listed in Table 3, comparison experiments 

were conducted for the same initial state, including an 

initial speed of 20 m/s and charging area of 200 m. 

        The minimum speed of the vehicle without a control 

strategy is 0 m/s, and the vehicle remains stationary at 

the stop line of the signalised intersection. For the 

CAEFVs controlled by the optimal driving control 

model, no STOP–GO behaviour is observed in the CPS, 

BPS, and TPS, and the vehicles pass through the 

signalised intersection without stopping in different 

modes. After introducing a communication delay, the 

speed curves of the three modes become different. The 

time required for the CAEFVs driving in the CPS mode 

to cross the entire signalised intersection is 

approximately 70 s, and the largest difference between 

their lowest speeds is 0.24 m/s. However, the times 

required for the CAEFVs driving in the BPS and TPS 

modes to cross the entire signalised intersection are 

equal to 48 and 40 s, and the corresponding minimum 

speed differences are 0.33 and 0.18 m/s, respectively. 

Figure 2b illustrates the vehicle passing process through 

a signalised intersection. In the scenario without a 

control strategy, the vehicle is affected by the red light 

and remains idle before the stop line at the signalised 

intersection. The CAEFVs that consider a 

communication delay can receive road and signal-light 

status information in advance, enabling effective 

decision-making optimisation control and avoiding the 

idling of vehicles at the signalised intersections. 

 The numerical simulation results obtained for the 

four scenarios are listed in Table 4. The time required 

for CAEFVs to cross the signalised intersection in the 

TPS mode is the lowest one. The power consumption of 

the vehicles operating in this mode is also relatively low, 

the energy recovered by the regenerative braking 

system without a control strategy is relatively high, and 

the charging efficiency of EVs driving in the CPS mode 

is the highest. Compared with the vehicles without a 

control strategy, the vehicle driving in the CPS mode 

saves 0.2014 kWh of electricity; the vehicle operating in 

the BPS mode saves slightly more than 0.0896 kWh of 

electricity, and the vehicle driving in the TPS mode 

saves slightly more than 0.0457 kWh of electricity. 

However, it takes longer times for the vehicles driving 

in the CPS mode to pass through the signalised 

intersection. In contrast, the vehicles driving in the TPS 

mode save less electricity than those operated using the 

other two strategies, which significantly reduces the 

passing time and increases the passing efficiency. 

3.2. Effects of Different Key Factors on 

Single-Vehicle Simulation 

To analyse the effects of the initial vehicle speed, 

WCL length, and charging efficiency on the model 

performance and differences between the three passing 

strategies, nine scenarios are considered in this study to 

determine the SOC. According to Table 5, scenarios A, B, 

and C are constructed for different initial speeds with a 

fixed WCA and charging efficiency. Scenarios D, E, and F 

and G, H, and I are constructed for different charging 

area lengths and charging efficiencies, respectively. 

The trajectory, speed, and SOC values of CAEFVs 

obtained for different scenarios. Figure 3a indicates that 

for the CPS, the time required for CAEFVs to arrive at 

the intersection is approximately 65 s and that the total 

time required to cross the control section is 

approximately 70 s, while for the TPS, the vehicles 

arrive at the intersection in 35 s and pass through the 

CA in 42 s or less. For the BPS, the vehicles arrive at the 

intersection through the CA in 50, 53, and 56 s, which 

indicates that the CAEFVs driving in the TPS mode can 

cross the intersection faster than the vehicles using the 

other strategies and thus reduce the total travel time. 

Figure 3b, c show that the trajectory curves obtained for 

the BPS are more dispersed than those constructed for 

the TPS and that the time at which the vehicles arrive at 

the intersection is uncertain. The temporal trajectory 

curves obtained for the TPS are more concentrated, and 

the vehicles arrive at the intersection stop line when the 

traffic light changes from red to green. Meanwhile, the 

CPS ensures that a vehicle passes through the 
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intersection and CA before the traffic light turns red. 

For BPS, the increase in the charging efficiency 

effectively extends the charging time of CAEFVs. 

Similarly, the vehicles following the TPS require less 

time to cross the CA. 

 Indicate that the speed of the vehicle driving in 

the TPS mode is generally higher than those of the 

vehicles driving in the other two modes and that its 

speed fluctuations are small. Overall, the average speed 

in the CPS mode is lower than those in the other two 

modes, especially the minimum speed. The minimum 

speed in the CPS mode is approximately equal to the 

minimum speed of the vehicle, while the minimum 

speeds achieved in the BPS and TPS modes amount to 

4–9 and 10–15 m/s, respectively. For the CPS, a vehicle 

requires more charging power, which necessitates 

travelling at a lower speed in the charging zone. For the 

TPS, the charging weighting coefficient is not a major 

factor; therefore, driving at a lower speed is not required 

when passing through the wireless charging zone.The 

maximum capacity of the battery is assumed to be 60 

kWh with an initial SOC of 0.5. When a vehicle drives in 

the WCA or decelerates, its remaining power increases 

significantly. When the vehicle accelerates, the 

remaining power decreases considerably.For the BPS, 

the remaining powers of the vehicles at the terminal 

moment in scenarios A, B, and C are equal to 0.5017, 

0.5014, and 0.5010 kWh, respectively. Therefore, it can be 

concluded that the higher the initial speed of the vehicle, 

the greater the power consumption in the CA. 

Simultaneously, the remaining power at the terminal 

time decreases with an increase in the initial speed. The 

WCL length and charging efficiency exert a stronger 

impact on the SOC, and the charging distance and 

charging efficiency have a significant effect on the power 

replenishment of CAEFVs. 

The numerical results obtained for the different 

scenarios are listed in Table 6. Here, tf is the terminal 

moment, Tcha is the charging time, Echa is the charge 

replenished by the vehicle in the CA, Econ is the pure 

energy consumption, Erec is the charge recovered by the 

regenerative braking system, and SOC is the remaining 

battery capacity. 

 

 

 

3.3. Multi-Vehicle Simulations in Different Modes 

3.3.1. Simulation Using a Fleet of CAEFVs 

To adapt the optimal driving mode to a fleet of CAEFVs 

at the intersection, scenario A in Table 5 is selected as the 

base scenario, where eight CAEFVs sequentially enter 

the upstream start of the intersection at an initial speed 

of 20 m/s and CA length of 200 m the delay time is equal 

to 0.15 s. Depicts the spatiotemporal trajectory and 

speed distribution curves of the fleet driving in different 

modes (the dashed lines indicate the coordinate points 

for entering and exiting the WCA). Figure 4a shows that 

for the TPS, the first vehicle in the fleet arrives at the 

intersection in 35 s and that the entire queue passes 

through the CA in approximately 47 s. According to Fthe 

vehicle queues with the BPS and CPS pass through the 

signalised intersection within the green-light cycle. 

Generally, in a CAEFV queue, the leading vehicle 

operating characteristics are part of the optimised or 

better trajectory, and the other vehicles are more likely to 

travel along suboptimal trajectories and use the wireless 

charging road with low latency. However, the fleet of 

CAEFVs using the CPS crosses the intersection after a 

longer time.The speed fluctuations of the fleet of 

CAEFVs following the CPS are significantly larger than 

those depicted in the perturbations created by this 

situation are more likely to cause traffic congestions. 

The power consumption values and travel times of 

the vehicles travelling in different modes. For the CPS, 

the vehicle consumes, recovers, and charges 

approximately 0.137, 0.054, and 0.241 kW/h, respectively, 

and its travel time and charging time are equal to 

approximately 63 and 39.5 s, respectively. These values 

are larger than those obtained for the BPS (0.02 kW/h, 

0.008 kW/h, 0.199 kW/h, 19.1 s, and 18.8 s, respectively). 

The vehicle driving in the TPS mode crosses the signal 

crossing with less power consumption; however, in this 

case, it also receives the lowest amount of recovered 

energy and charging power. This means that CAEFVs 

driving in different modes can reasonably use the WCA 

and that the vehicles must consume more power at 

larger driving speed variations. The regenerative 

braking recovery energy does not significantly fluctuate 

with speed; however, it gradually increases with 

decreasing speed. Furthermore, the travel time in the 

TPS mode is shorter than that in the CPS mode by 
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approximately 23 s, which is advantageous in terms of 

traffic efficiency. 

3.3.2. Mixed-Traffic Simulations Using Different MPRs 

In the mixed-traffic simulations, the adaptability and 

robustness of the proposed model were analysed in 

different modes by varying the MPRs of CAEFVs to 

determine their traffic benefits. Based on scenario E in 

Table 5, the dynamic initial speeds of the IDM and 

CAEFVs were set to 16–22 and 18–20 m/s, respectively, 

with an initial time distance of 30–60 m. The vehicle 

trajectories determined for the TPS, BPS, CPS, and IDM 

(control) are represented by the dark blue, red, light blue, 

and black lines, respectively. 

Overall, as the MPR value increases, the number of 

vehicles stopping and waiting at the intersection stop 

line gradually decreases, and more vehicles travel 

through the signalised intersection along the optimised 

or suboptimal trajectories. However, a low penetration 

rate increases the fluctuations of vehicle trajectories, and 

even the IDM-controlled vehicles may not be able to 

cross the CA within the required timeframe. As shown in 

Figure 6c,d, when the preceding vehicle is a CAEFV, it 

can effectively shape the trajectory of the following 

vehicle. However, when the preceding vehicle is an 

IDM-controlled vehicle, it cannot effectively guide the 

following vehicle driving in the CPS mode. Therefore, 

increasing the market share of CAEFVs may 

significantly improve the passing efficiency of vehicles 

in the CA. 

The average travel times and power consumption 

values obtained in different modes at MPRs varying 

from 0 and 100%. According to Figure 7a, the power 

consumption, regenerative braking recovery energy, 

charging power, and average travel time determined for 

the mixed traffic with the TPS at an MPR of 0% are equal 

to 1.388 kW,0.56 kW, 0.943 kW, and 39.7 s, respectively. 

When the MPR value is increased from 20% to 100%, the 

regenerative braking recovery energy decreases by 

approximately 4.6–37.2%, and the average travel time 

saving amounts to 2.1 s. This indicates that as the MPR 

increases, the TPS has an advantage in terms of the 

traffic efficiency. When the MPR reaches 100%, the rise in 

the power consumption as compared with the values 

obtained at other MPRs is approximately 3.3–37.1%. For 

the BPS and CPS modes described in Figure 5b,c, the 

power consumption increases with increasing MPR from 

1.388 kW by approximately 11.7–39.4% and 6.8–37.3%, 

respectively. Meanwhile, the charging power increases 

from 0.943 kW to 2.073 and 2.276 kW, respectively, while 

the regenerative braking recovery energy also exhibits a 

slow upward trend, which indicates that the vehicle has 

a significant charging advantage when driving through 

signalised intersections in the CPS mode. For the BPS, 

the average vehicle travel time increases slightly. In 

contrast, the average travel time in the CPS mode 

increases significantly, which also indicates that the 

vehicle inevitably sacrifices travel time to gain more 

power while driving. Thus, each mode succeeds in 

achieving its own objectives. 

4. CONCLUSIONS 

To increase the driving range and market share of 

CAEFVs as well as to solve the problem of their power 

and time wastage at signal intersections owing to the 

frequent speed fluctuations, an optimal driving model of 

CAEFVs at signal intersections with different passing 

strategies is proposed. Based on the WCSSI, a joint 

multi-objective optimisation model that considers the 

passing efficiency, vehicle energy consumption, driving 

comfort, and charging efficiency was developed. Based 

on the actual needs of CAEFVs, the passing modes were 

divided into the CPS, BPS, and TPS with various 

weighting coefficients. The obtained results revealed 

that a single vehicle could pass faster through a 

signalised intersection in the TPS mode, while more 

charging power could be obtained with the CPS. The 

effectiveness of the proposed model was verified by 

estimating the power consumption in different passing 

modes using the initial speed, WCL length, and charging 

efficiency as the key parameters. It was found that the 

CPS significantly increased the charging power at the 

expense of a small amount of passing time, while the 

BPS increased both the passing efficiency and charging 

power, and the model exhibited high robustness in 

different initial states. Moreover, the WCL length and 

charging efficiency produced a significant impact on the 

SOC and power replenishment of CAEFVs. 

For the fleet of CAEFVs, the adaptability of the optimal 

driving model was verified by evaluating and analysing 

the trajectories, speeds, and SOCs of the vehicles under 

the influence of different policies. The obtained results 

indicated that the model utilising a proper passing 

strategy could identify the optimal vehicle driving path 
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through multiobjective speed planning. Moreover, 

speed-guidance recommendations for fleets that could 

help pass through signalised intersections without 

stopping were provided to satisfy the differentiated 

demand while taking the WCL into account. For the 

mixed traffic, the TPS significantly outperformed the 

unguided model in terms of the power consumption and 

average travel time. The BPS and CPS outperformed the 

unguided model in terms of the charging benefits, while 

the CPS negatively influenced the average travel time. It 

is noteworthy that a lower MPR generates trajectory 

fluctuations strongly affecting the vehicle efficiency and 

that traffic benefits are closely related to the type of the 

leading vehicle. However, owing to the complexity of the 

existing traffic systems, it is necessary to extend the list 

of the key factors affecting the model validity and 

calibrate the model parameters more accurately. In 

addition, the influence of background vehicles on lane 

changes must be considered to satisfy the real-world 

requirements established by the current developments in 

autonomous driving and other technologies. Future 

research should focus on (1) studying the game effects 

between conflicting control strategies in mixed traffic 

where the three strategies coexist with human driving 

and (2) improving and optimising the proposed control 

method. 
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