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Logic compatible gain cell (GC)-embedded DRAM (eDRAM) arrays are considered an alternative to SRAM 

because of their small size, non rationed operation, low static leakage, and two port functionality. But 

traditional GC-eDRAM implementations require boosted control signals in order to write full voltage levels to 

the cell to reduce the refresh rate and shorten access times. The boosted levels require an extra power supply 

or on-chip charge pumps, as well as nontrivial level shifting and toleration of high voltage levels. In this 

paper, we present a novel, logic compatible, 3T GC-eDRAM bit cell that operates with a single-supply voltage 

and provides superior write capability to the conventional GC structures. The proposed circuit is 

demonstrated in 0.25μm CMOS process targeted at low power, energy efficient application. 
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I. INTRODUCTION 

Digital system designers, faced with a large and 

rapidly growing gap between available chip I/O 

bandwidth and demand for bandwidth, attempt to 

find clever system partitioning schemes to reduce 

demand.  In a design environment in which 

millions of devices can be economically integrated 

onto a chip, but only a few hundred I/O pins can be 

supported, efficient system partitioning requires 

ever more on-chip storage. ASIC designs now 

commonly require large amounts of on-chip 

memory, usually implemented as static 

random-access memory (SRAM).  SRAM with PFET 

loads can be supported on any CMOS process but 

requires about 1,000 λ2 of area per bit.  Some 

vendors offer special processes, adapted from 

commercial SRAM manufacture, that include 

polysilicon resistor loads; resistor-load SRAM cells 

can be made as small as a few hundred λ2.  

Dynamic memory (DRAM) circuits, while 

potentially much more compact than SRAMs, have 

fallen out of favor with ASIC designers.  We 

speculate that this is partly because of the 

perceived complexity of DRAM circuit design and 

partly because of the unfavorable scaling of FET 

leakage currents in sub-micron CMOS that makes 

dynamic circuitry more problematic. Few computer 

systems requires as much memory bandwidth per 

bit as hardware accelerators for interactive 3D 

graphics.  Current high-end graphics hardware 

must support bandwidth of order 10 

Gbytes/second into relatively small amounts of 

total storage, perhaps a few 10s of MBytes.  

Graphics systems built with commercial RAM 

chips therefore feature many-way partitioning and 

considerable replication of data across partitions.  

Our research for the past 15 years has focussed on 

ways to remove the memory bandwidth bottleneck 

by combining graphics processors with on-chip 
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RAM.  Large improvements can be realized simply 

by removing the column decoder of conventional 

RAM designs, thereby liberating the huge 

bandwidth from many-way parallel access inherent 

in rectangular memory organizations.   We have 

built and fielded three generations of experimental 

systems to examine the validity of this idea 

(references [1-3]).  Within the past couple of years, 

this idea has become main stream, particularly in 

cost-sensitive applications such as graphics 

accelerators for PCs. 

 An efficient implementation of our latest system,  

Pixel Flow, required on-chip memory with much 

higher density than could be achieved with 

conventional SRAM.  To satisfy this requirement we 

developed the 1-transistor embedded DRAM that is 

the subject of this paper. Designed in scalable 

geometric rules, the DRAM is about four times 

denser than P-load SRAM in the same rules, dense 

enough to permit about 1Mb of RAM on a 10mm 

square chip in 0.5µ CMOS.  It is reasonably well 

optimized for low power consumption, runs at the 

processors‟ speed (100MHz), and is fairly simple 

and portable to other applications.  The embedded 

DRAM serves as a register file for an array of 256 

8-bit processors in a graphics „enhanced memory 

chip‟ (EMC) [3]; each processor „owns‟ 384 bytes of 

memory.  The memory layout is bit-sliced, so the 

organization is 2,048 bits (columns) by 384 words 

(rows).  In the word dimension, the memory is 

composed of „pages‟, each a block of 32 words.  

Each page is a self-contained memory system with 

bit cells arrayed along a pair of bit lines, a local 

sense amp and precharger, and an interface to a 

(differential) data bus that delivers data between 

the (12) pages and the processor.  The column 

dimension has no decoder; on every cycle of chip 

operation, data is read from or written to 2,048 bits 

of memory.  

The organization into many small pages is the 

central design feature of this DRAM, inspired by 

Don Speck‟s observation in the design of the 

MOSAIC DRAM [4] that short, low-capacitance bit 

lines allow large voltage differences that can be 

sensed with simple sense amps.  Simple sense 

amps, in turn, allow compact realizations of small 

memory modules. This advantageous design 

„spiral‟ also leads to considerable power savings.  If 

data is fetched from one of an array of small 

modules, the modules that are not accessed 

remain quiescent and burn no power. 

 

II. RELATED WORK 

2.1. DRAM Organization and Operation 

We present a brief outline of the organization and 

operation of a modern DRAM main memory 

system. Physical structures such as the DIMM, 

chip, and sub-array are abstracted by the logical 

structures of rank and bank for clarity where 

possible. More details can be found in [5]. A 

modern DRAM main memory system is organized 

hierarchically as shown in Figure (a). The highest 

level of the hierarchy is the channel. Each channel 

has command, address, and data buses that are 

independent from those of other channels, allowing 

for fully concurrent access between channels. A 

channel contains one or more ranks. Each rank 

corresponds to an independent set of DRAM 

devices. Hence, all ranks in a channel can operate 

in parallel, although this rank-level parallelism is 

constrained by the shared channel bandwidth. 

Within each rank is one or more banks. Each bank 

corresponds to a distinct DRAM cell array. As such, 

all banks in a rank can operate in parallel, 

although this bank-level parallelism is constrained 

both by the shared channel bandwidth as well as 

by resources that are shared between banks on 

each DRAM device, such as device power. 

Each DRAM bank consists of a two-dimensional 

array of DRAM cells, as shown in Figure (b). A 

DRAM cell consists of a capacitor and an access 

transistor. Each access transistor connects a 

capacitor to a wire called a bitline and is controlled 

by a wire called a word line. Cells sharing a word 

line form a row. Each bank also contains a row of 

sense amplifiers, where each sense amplifier is 

connected to a single bitline. This row of sense 

amplifiers is called the bank‟s row buffer. Data is 

represented by charge on a DRAM cell capacitor. In 

order to access data in DRAM, the row containing 

the data must first be opened (or activated) to place 

the data on the bitlines. To open a row, all bitlines 

must previously be precharged to VDD/2. The 

row‟s wordline is enabled, connecting all capacitors 

in that row to their respective bitlines. This causes 

charge to flow from the capacitor to the bitline (if 

the capacitor is charged to VDD) or vice versa (if the 

capacitor is at 0 V). In either case, the sense 

amplifier connected to that bitline detects the 

voltage change and amplifies it, driving the bitline 

fully to either VDD or 0 V. Data in the open row can 

then be read or written by sensing or driving the 

voltage on the appropriate bitlines. 

Successive accesses to the same row, called row 

hits, can be serviced without opening a new row. 
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Accesses to different rows in the same bank, called 

row misses, require a different row to be opened. 

Since all rows in the bank share the same bitlines, 

only one row can be open at a time. To close a row, 

the row‟s word line is disabled, disconnecting the 

capacitors from the bitlines, and the bitlines are 

precharged to VDD/2 so that another row can be 

opened. Opening a row requires driving the row‟s 

wordline as well as all of the bitlines; due to the 

high parasitic capacitance of each wire, opening a 

row is expensive both in latency and in power. 

Therefore, row hits are serviced with both lower 

latency and lower energy consumption than row 

misses. The capacity of a DRAM device is the 

number of rows in the device times the number of 

bits per row. Increasing the number of bits per row 

increases the latency and power consumption of 

opening a row due to longer wordlines and the 

increased number of bitlines driven per activation 

[6]. Hence, the size of each row has remained 

limited to between 1 KB and 2 KB for several DRAM 

generations, while the number of rows per device 

has scaled linearly with DRAM device capacity [7, 

8, 9]. 

 
(a) Refresh latency 

 
(b) Throughput loss 

 
(c) Power consumption 

 

2.2. DRAM Retention Time Distribution 

The time before a DRAM cell loses data depends 

on the leakage current for that cell‟s capacitor, 

which varies between cells within a device. This 

gives each DRAM cell a characteristic retention 

time. Previous studies have shown that DRAM cell 

retention time can be modeled by categorizing cells 

as either normal or leaky. Retention time within 

each category follows a log-normal distribution [8, 

10, 11]. The overall retention time distribution. The 

DRAM refresh interval is set by the DRAM cell with 

the lowest retention time. However, the vast 

majority of cells can tolerate a much longer refresh 

interval. In a 32 GB DRAM system, on average only 

≈ 30 cells cannot tolerate a refresh interval that is 

twice as long, and only ≈ 103 cells cannot tolerate a 

refresh interval four times longer. For the vast 

majority of the 1011 cells in the system, the refresh 

interval of 64 ms represents a significant waste of 

energy and time. 

III. IMPLEMENTATION 

3.1. Overview 

A conceptual overview of our mechanism is shown 

in Figure (d). We define a row‟s retention time as 

the minimum retention time across all cells in that 

row. A set of bins is added to the memory 

controller, each associated with a range of 

retention times. Each bin contains all of the rows 

whose retention time falls into that bin‟s range. The 

shortest retention time covered by a given bin is the 

bin‟s refresh interval. The shortest retention time 

that is not covered by any bins is the new default 

refresh interval. In the example shown in Figure 4, 

there are 2 bins. One bin contains all rows with 

retention time between 64 and 128 ms; its bin 
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refresh interval is 64 ms. The other bin contains all 

rows with retention time between 128 and 256 ms; 

its bin refresh interval is 128 ms. The new default 

refresh interval is set to 256 ms.  

A retention time profiling step determines each 

row‟s retention time ( 1 in Figure (d)). For each row, 

if the row‟s retention time is less than the new 

default refresh interval, the memory controller 

inserts it into the appropriate bin 2 . During system 

operation 3 , the memory controller ensures that 

each row is chosen as a refresh candidate every 64 

ms. Whenever a row is chosen as a refresh 

candidate, the memory controller checks each bin 

to determine the row‟s retention time. If the row 

appears in a bin, the memory controller issues a 

refresh operation for the row if the bin‟s refresh 

interval has elapsed since the row was last 

refreshed. Otherwise, the memory controller issues 

a refresh operation for the row if the default refresh 

interval has elapsed since the row was last 

refreshed. Since each row is refreshed at an 

interval that is equal to or shorter than its 

measured retention time, data integrity is 

guaranteed. Our idea consists of three key 

components: (1) retention time profiling, (2) storing 

rows into retention time bins, and (3) issuing 

refreshes to rows when necessary. We discuss how 

to implement each of these components in turn in 

order to design an efficient implementation of our 

mechanism.  

 
Figure (d): RAIDR operation 

 

3.2. Retention Time Profiling 

Measuring row retention times requires measuring 

the retention time of each cell in the row. The 

straightforward method of conducting these 

measurements is to write a small number of static 

patterns (such as “all 1s” or “all 0s”), turning off 

refreshes, and observing when the first bit  changes 

. Before the row retention times for a system are 

collected, the memory controller performs 

refreshes using the baseline auto refresh 

mechanism. After the row retention times for a 

system have been measured, the results can be 

saved in a file by the operating system. During 

future boot-ups, the results can be restored into 

the memory controller without requiring further 

profiling, since retention time does not change 

significantly over a DRAM cell‟s lifetime [8]. 

 

3.3. Storing Retention Time Bins 

The memory controller must store the set of rows 

in each bin. A naive approach to storing retention 

time bins would use a table of rows for each bin. 

However, the exact number of rows in each bin will 

vary depending on the amount of DRAM in the 

system, as well as due to retention time variation 

between DRAM chips (especially between chips 

from different manufacturing processes). If a 

table‟s capacity is inadequate to store all of the 

rows that fall into a bin, this implementation no 

longer provides correctness (because a row not in 

the table could be refreshed less frequently than 

needed) and the memory controller must fall back 

to refreshing all rows at the maximum refresh rate. 

Therefore, tables must be sized conservatively (i.e. 

assuming a large number of rows with short 

retention times), leading to large hardware cost for 

table storage. To overcome these difficulties, we 

propose the use of Bloom filters [2] to implement 

retention time bins. A Bloom filter is a structure 

that provides a compact way of representing set 

membership and can be implemented efficiently in 

hardware [4, 12]. 

A Bloom filter consists of a bit array of length m 

and k distinct hash functions that map each 

element to positions in the array. Figure 5a shows 

an example Bloom filter with a bit array of length m 

= 16 and k = 3 hash functions. All bits in the bit 

array are initially set to 0. To insert an element into 

the Bloom filter, the element is hashed by all k 

hash functions, and all of the bits in the 

corresponding positions are set to 1 („1' in Figure 

(e)). To test if an element is in the Bloom filter, the 

element is hashed by all k hash functions. If all of 

the bits at the corresponding bit positions are 1, 

the element is declared to be present in the set‟ 2‟. 

If any of the corresponding bits are 0, the element 

is declared to be not present in the set‟3‟. An 

element can never be removed from a Bloom filter. 

Many different elements may map to the same bit, 

so inserting other elements ‟4‟ may lead to a false 

positive, where an element is incorrectly declared 

to be present in the set even though it was never 

inserted into the Bloom filter „5‟. However, because 

bits are never reset to 0, an element can never be 

incorrectly declared to be not present in the set; 

that is, a false negative can never occur. A Bloom 

filter is therefore a highly storage-efficient set 
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representation in situations where the possibility of 

false positives and the inability to remove elements 

are acceptable. We observe that the problem of 

storing retention time bins is such a situation. 

Furthermore, unlike the previously discussed table 

implementation, a Bloom filter can contain any 

number of elements; the probability of a false 

positive gradually increases with the number of 

elements inserted into the Bloom filter, but false 

negatives will never occur. In the context of our 

mechanism, this means that rows may be 

refreshed more frequently than necessary, but a 

row is never refreshed less frequently than 

necessary, so data integrity is guaranteed. 

The Bloom filter parameters m and k can be 

optimally chosen based on expected capacity and 

desired false positive probability [13]. The 

particular hash functions used to index the Bloom 

filter are an implementation choice. However, the 

effectiveness of our mechanism is largely 

insensitive to the choice of hash function, since 

weak cells are already distributed randomly 

throughout DRAM [8]. The results presented by 

use a hash function based on the xorshift 

pseudo-random number generator [14], which in 

our evaluation is comparable in effectiveness to H3 

hash functions that can be easily implemented in 

hardware [3, 15]. 

IV. EXPERIMENTAL RESULTS 

The DRAM has been fabricated on several wafer 

lots over the past year, and full functionality has 

been demonstrated.  Test performed on wafers with 

near-nominal fabrication parameters were found to 

operate at 150MHz, even in packages, where 

temperatures are generally higher than on a 

thermally massive wafer test chuck.  A schmoo plot 

for a nominal-fabrication packaged chip is shown 

in Figure (f), showing its limits of operation over 

power supply voltage and clock speed.   

 
Figure (e).  Schmoo plot for a nominal chip. 

 

We also have available a skewed  wafer lot, in which 

a few wafers in the lot have various parameters 

purposely biased toward either worst-case (slow) or 

best-case (fast) corners. These wafers also 

demonstrated full functionality; the DRAM on the 

slow skewed wafers operates correctly at over 

125MHz (design speed was 100MHz). To evaluate 

data retention time, we devised tests that leave one 

or more pages of memory quiescent (and 

unrefreshed) for long, variable periods of time.  

During these time periods, the tests run 

memory-intensive code on other pages of memory, 

in order to maximize noise. These tests were run on 

wafers mounted on a „hot chuck‟, a device that 

allows the wafer temperature to be controlled fairly 

accurately.  All memory data failures were of the 

form of initially-high storage nodes going low, 

confirming the hypothesis that junction leakage is 

the main data-loss mechanism at work in these 

DRAMs.   

V. CONCLUSION 

We presented Retention-Aware Intelligent DRAM 

Refresh (RAIDR), a low-cost modification to the 

memory controller that reduces the energy and 

performance impact of DRAM refresh. RAIDR 

groups rows into bins depending on their required 

refresh rate, and applies a different refresh rate to 

each bin, decreasing the refresh rate for most rows 

while ensuring that rows with low retention times 

do not lose data. To our knowledge, RAIDR is the 

first work to propose a low-cost memory controller 

modification that reduces DRAM refresh 

operations by exploiting variability in DRAM cell 

retention times. 
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