

106 International Journal for Modern Trends in Science and Technology

International Journal for Modern Trends in Science and Technology

Volume: 02, Issue No: 10, October 2016

http://www.ijmtst.com

ISSN: 2455-3778

Time and Low Power Operation Using Embedded Dram
to Gain Cell Data Retention

D. Singa Reddy1 | B. Govardhana2

1PG Scholar, Department of ECE, Geethanjali Engineering College, Nannur-V, Kurnool-Dist.
2Assistant Professor, Department of ECE, Geethanjali Engineering College, Nannur-V, Kurnool-Dist.

To Cite this Article
D. Singa Reddy and B. Govardhana, Time and Low Power Operation Using Embedded Dram to Gain Cell Data Retention,
International Journal for Modern Trends in Science and Technology, Vol. 02, Issue 10, 2016, pp. 106-111.

Logic compatible gain cell (GC)-embedded DRAM (eDRAM) arrays are considered an alternative to SRAM

because of their small size, non rationed operation, low static leakage, and two port functionality. But

traditional GC-eDRAM implementations require boosted control signals in order to write full voltage levels to

the cell to reduce the refresh rate and shorten access times. The boosted levels require an extra power supply

or on-chip charge pumps, as well as nontrivial level shifting and toleration of high voltage levels. In this

paper, we present a novel, logic compatible, 3T GC-eDRAM bit cell that operates with a single-supply voltage

and provides superior write capability to the conventional GC structures. The proposed circuit is

demonstrated in 0.25μm CMOS process targeted at low power, energy efficient application.

KEYWORDS: Embedded DRAM, gain cell, data retention time, and low power operation.

Copyright © 2016 International Journal for Modern Trends in Science and Technology

All rights reserved.

I. INTRODUCTION

Digital system designers, faced with a large and

rapidly growing gap between available chip I/O

bandwidth and demand for bandwidth, attempt to

find clever system partitioning schemes to reduce

demand. In a design environment in which

millions of devices can be economically integrated

onto a chip, but only a few hundred I/O pins can be

supported, efficient system partitioning requires

ever more on-chip storage. ASIC designs now

commonly require large amounts of on-chip

memory, usually implemented as static

random-access memory (SRAM). SRAM with PFET

loads can be supported on any CMOS process but

requires about 1,000 λ2 of area per bit. Some

vendors offer special processes, adapted from

commercial SRAM manufacture, that include

polysilicon resistor loads; resistor-load SRAM cells

can be made as small as a few hundred λ2.

Dynamic memory (DRAM) circuits, while

potentially much more compact than SRAMs, have

fallen out of favor with ASIC designers. We

speculate that this is partly because of the

perceived complexity of DRAM circuit design and

partly because of the unfavorable scaling of FET

leakage currents in sub-micron CMOS that makes

dynamic circuitry more problematic. Few computer

systems requires as much memory bandwidth per

bit as hardware accelerators for interactive 3D

graphics. Current high-end graphics hardware

must support bandwidth of order 10

Gbytes/second into relatively small amounts of

total storage, perhaps a few 10s of MBytes.

Graphics systems built with commercial RAM

chips therefore feature many-way partitioning and

considerable replication of data across partitions.

Our research for the past 15 years has focussed on

ways to remove the memory bandwidth bottleneck

by combining graphics processors with on-chip

ABSTRACT

http://www.ijmtst.com/

107 International Journal for Modern Trends in Science and Technology

D. Singa Reddy and B. Govardhana : Time and Low Power Operation Using Embedded Dram to Gain Cell Data
Retention

RAM. Large improvements can be realized simply

by removing the column decoder of conventional

RAM designs, thereby liberating the huge

bandwidth from many-way parallel access inherent

in rectangular memory organizations. We have

built and fielded three generations of experimental

systems to examine the validity of this idea

(references [1-3]). Within the past couple of years,

this idea has become main stream, particularly in

cost-sensitive applications such as graphics

accelerators for PCs.

 An efficient implementation of our latest system,

Pixel Flow, required on-chip memory with much

higher density than could be achieved with

conventional SRAM. To satisfy this requirement we

developed the 1-transistor embedded DRAM that is

the subject of this paper. Designed in scalable

geometric rules, the DRAM is about four times

denser than P-load SRAM in the same rules, dense

enough to permit about 1Mb of RAM on a 10mm

square chip in 0.5µ CMOS. It is reasonably well

optimized for low power consumption, runs at the

processors‟ speed (100MHz), and is fairly simple

and portable to other applications. The embedded

DRAM serves as a register file for an array of 256

8-bit processors in a graphics „enhanced memory

chip‟ (EMC) [3]; each processor „owns‟ 384 bytes of

memory. The memory layout is bit-sliced, so the

organization is 2,048 bits (columns) by 384 words

(rows). In the word dimension, the memory is

composed of „pages‟, each a block of 32 words.

Each page is a self-contained memory system with

bit cells arrayed along a pair of bit lines, a local

sense amp and precharger, and an interface to a

(differential) data bus that delivers data between

the (12) pages and the processor. The column

dimension has no decoder; on every cycle of chip

operation, data is read from or written to 2,048 bits

of memory.

The organization into many small pages is the

central design feature of this DRAM, inspired by

Don Speck‟s observation in the design of the

MOSAIC DRAM [4] that short, low-capacitance bit

lines allow large voltage differences that can be

sensed with simple sense amps. Simple sense

amps, in turn, allow compact realizations of small

memory modules. This advantageous design

„spiral‟ also leads to considerable power savings. If

data is fetched from one of an array of small

modules, the modules that are not accessed

remain quiescent and burn no power.

II. RELATED WORK

2.1. DRAM Organization and Operation

We present a brief outline of the organization and

operation of a modern DRAM main memory

system. Physical structures such as the DIMM,

chip, and sub-array are abstracted by the logical

structures of rank and bank for clarity where

possible. More details can be found in [5]. A

modern DRAM main memory system is organized

hierarchically as shown in Figure (a). The highest

level of the hierarchy is the channel. Each channel

has command, address, and data buses that are

independent from those of other channels, allowing

for fully concurrent access between channels. A

channel contains one or more ranks. Each rank

corresponds to an independent set of DRAM

devices. Hence, all ranks in a channel can operate

in parallel, although this rank-level parallelism is

constrained by the shared channel bandwidth.

Within each rank is one or more banks. Each bank

corresponds to a distinct DRAM cell array. As such,

all banks in a rank can operate in parallel,

although this bank-level parallelism is constrained

both by the shared channel bandwidth as well as

by resources that are shared between banks on

each DRAM device, such as device power.

Each DRAM bank consists of a two-dimensional

array of DRAM cells, as shown in Figure (b). A

DRAM cell consists of a capacitor and an access

transistor. Each access transistor connects a

capacitor to a wire called a bitline and is controlled

by a wire called a word line. Cells sharing a word

line form a row. Each bank also contains a row of

sense amplifiers, where each sense amplifier is

connected to a single bitline. This row of sense

amplifiers is called the bank‟s row buffer. Data is

represented by charge on a DRAM cell capacitor. In

order to access data in DRAM, the row containing

the data must first be opened (or activated) to place

the data on the bitlines. To open a row, all bitlines

must previously be precharged to VDD/2. The

row‟s wordline is enabled, connecting all capacitors

in that row to their respective bitlines. This causes

charge to flow from the capacitor to the bitline (if

the capacitor is charged to VDD) or vice versa (if the

capacitor is at 0 V). In either case, the sense

amplifier connected to that bitline detects the

voltage change and amplifies it, driving the bitline

fully to either VDD or 0 V. Data in the open row can

then be read or written by sensing or driving the

voltage on the appropriate bitlines.

Successive accesses to the same row, called row

hits, can be serviced without opening a new row.

108 International Journal for Modern Trends in Science and Technology

D. Singa Reddy and B. Govardhana : Time and Low Power Operation Using Embedded Dram to Gain Cell Data
Retention

Accesses to different rows in the same bank, called

row misses, require a different row to be opened.

Since all rows in the bank share the same bitlines,

only one row can be open at a time. To close a row,

the row‟s word line is disabled, disconnecting the

capacitors from the bitlines, and the bitlines are

precharged to VDD/2 so that another row can be

opened. Opening a row requires driving the row‟s

wordline as well as all of the bitlines; due to the

high parasitic capacitance of each wire, opening a

row is expensive both in latency and in power.

Therefore, row hits are serviced with both lower

latency and lower energy consumption than row

misses. The capacity of a DRAM device is the

number of rows in the device times the number of

bits per row. Increasing the number of bits per row

increases the latency and power consumption of

opening a row due to longer wordlines and the

increased number of bitlines driven per activation

[6]. Hence, the size of each row has remained

limited to between 1 KB and 2 KB for several DRAM

generations, while the number of rows per device

has scaled linearly with DRAM device capacity [7,

8, 9].

(a) Refresh latency

(b) Throughput loss

(c) Power consumption

2.2. DRAM Retention Time Distribution

The time before a DRAM cell loses data depends

on the leakage current for that cell‟s capacitor,

which varies between cells within a device. This

gives each DRAM cell a characteristic retention

time. Previous studies have shown that DRAM cell

retention time can be modeled by categorizing cells

as either normal or leaky. Retention time within

each category follows a log-normal distribution [8,

10, 11]. The overall retention time distribution. The

DRAM refresh interval is set by the DRAM cell with

the lowest retention time. However, the vast

majority of cells can tolerate a much longer refresh

interval. In a 32 GB DRAM system, on average only

≈ 30 cells cannot tolerate a refresh interval that is

twice as long, and only ≈ 103 cells cannot tolerate a

refresh interval four times longer. For the vast

majority of the 1011 cells in the system, the refresh

interval of 64 ms represents a significant waste of

energy and time.

III. IMPLEMENTATION

3.1. Overview

A conceptual overview of our mechanism is shown

in Figure (d). We define a row‟s retention time as

the minimum retention time across all cells in that

row. A set of bins is added to the memory

controller, each associated with a range of

retention times. Each bin contains all of the rows

whose retention time falls into that bin‟s range. The

shortest retention time covered by a given bin is the

bin‟s refresh interval. The shortest retention time

that is not covered by any bins is the new default

refresh interval. In the example shown in Figure 4,

there are 2 bins. One bin contains all rows with

retention time between 64 and 128 ms; its bin

109 International Journal for Modern Trends in Science and Technology

D. Singa Reddy and B. Govardhana : Time and Low Power Operation Using Embedded Dram to Gain Cell Data
Retention

refresh interval is 64 ms. The other bin contains all

rows with retention time between 128 and 256 ms;

its bin refresh interval is 128 ms. The new default

refresh interval is set to 256 ms.

A retention time profiling step determines each

row‟s retention time (1 in Figure (d)). For each row,

if the row‟s retention time is less than the new

default refresh interval, the memory controller

inserts it into the appropriate bin 2 . During system

operation 3 , the memory controller ensures that

each row is chosen as a refresh candidate every 64

ms. Whenever a row is chosen as a refresh

candidate, the memory controller checks each bin

to determine the row‟s retention time. If the row

appears in a bin, the memory controller issues a

refresh operation for the row if the bin‟s refresh

interval has elapsed since the row was last

refreshed. Otherwise, the memory controller issues

a refresh operation for the row if the default refresh

interval has elapsed since the row was last

refreshed. Since each row is refreshed at an

interval that is equal to or shorter than its

measured retention time, data integrity is

guaranteed. Our idea consists of three key

components: (1) retention time profiling, (2) storing

rows into retention time bins, and (3) issuing

refreshes to rows when necessary. We discuss how

to implement each of these components in turn in

order to design an efficient implementation of our

mechanism.

Figure (d): RAIDR operation

3.2. Retention Time Profiling

Measuring row retention times requires measuring

the retention time of each cell in the row. The

straightforward method of conducting these

measurements is to write a small number of static

patterns (such as “all 1s” or “all 0s”), turning off

refreshes, and observing when the first bit changes

. Before the row retention times for a system are

collected, the memory controller performs

refreshes using the baseline auto refresh

mechanism. After the row retention times for a

system have been measured, the results can be

saved in a file by the operating system. During

future boot-ups, the results can be restored into

the memory controller without requiring further

profiling, since retention time does not change

significantly over a DRAM cell‟s lifetime [8].

3.3. Storing Retention Time Bins

The memory controller must store the set of rows

in each bin. A naive approach to storing retention

time bins would use a table of rows for each bin.

However, the exact number of rows in each bin will

vary depending on the amount of DRAM in the

system, as well as due to retention time variation

between DRAM chips (especially between chips

from different manufacturing processes). If a

table‟s capacity is inadequate to store all of the

rows that fall into a bin, this implementation no

longer provides correctness (because a row not in

the table could be refreshed less frequently than

needed) and the memory controller must fall back

to refreshing all rows at the maximum refresh rate.

Therefore, tables must be sized conservatively (i.e.

assuming a large number of rows with short

retention times), leading to large hardware cost for

table storage. To overcome these difficulties, we

propose the use of Bloom filters [2] to implement

retention time bins. A Bloom filter is a structure

that provides a compact way of representing set

membership and can be implemented efficiently in

hardware [4, 12].

A Bloom filter consists of a bit array of length m

and k distinct hash functions that map each

element to positions in the array. Figure 5a shows

an example Bloom filter with a bit array of length m

= 16 and k = 3 hash functions. All bits in the bit

array are initially set to 0. To insert an element into

the Bloom filter, the element is hashed by all k

hash functions, and all of the bits in the

corresponding positions are set to 1 („1' in Figure

(e)). To test if an element is in the Bloom filter, the

element is hashed by all k hash functions. If all of

the bits at the corresponding bit positions are 1,

the element is declared to be present in the set‟ 2‟.

If any of the corresponding bits are 0, the element

is declared to be not present in the set‟3‟. An

element can never be removed from a Bloom filter.

Many different elements may map to the same bit,

so inserting other elements ‟4‟ may lead to a false

positive, where an element is incorrectly declared

to be present in the set even though it was never

inserted into the Bloom filter „5‟. However, because

bits are never reset to 0, an element can never be

incorrectly declared to be not present in the set;

that is, a false negative can never occur. A Bloom

filter is therefore a highly storage-efficient set

110 International Journal for Modern Trends in Science and Technology

D. Singa Reddy and B. Govardhana : Time and Low Power Operation Using Embedded Dram to Gain Cell Data
Retention

representation in situations where the possibility of

false positives and the inability to remove elements

are acceptable. We observe that the problem of

storing retention time bins is such a situation.

Furthermore, unlike the previously discussed table

implementation, a Bloom filter can contain any

number of elements; the probability of a false

positive gradually increases with the number of

elements inserted into the Bloom filter, but false

negatives will never occur. In the context of our

mechanism, this means that rows may be

refreshed more frequently than necessary, but a

row is never refreshed less frequently than

necessary, so data integrity is guaranteed.

The Bloom filter parameters m and k can be

optimally chosen based on expected capacity and

desired false positive probability [13]. The

particular hash functions used to index the Bloom

filter are an implementation choice. However, the

effectiveness of our mechanism is largely

insensitive to the choice of hash function, since

weak cells are already distributed randomly

throughout DRAM [8]. The results presented by

use a hash function based on the xorshift

pseudo-random number generator [14], which in

our evaluation is comparable in effectiveness to H3

hash functions that can be easily implemented in

hardware [3, 15].

IV. EXPERIMENTAL RESULTS

The DRAM has been fabricated on several wafer

lots over the past year, and full functionality has

been demonstrated. Test performed on wafers with

near-nominal fabrication parameters were found to

operate at 150MHz, even in packages, where

temperatures are generally higher than on a

thermally massive wafer test chuck. A schmoo plot

for a nominal-fabrication packaged chip is shown

in Figure (f), showing its limits of operation over

power supply voltage and clock speed.

Figure (e). Schmoo plot for a nominal chip.

We also have available a skewed wafer lot, in which

a few wafers in the lot have various parameters

purposely biased toward either worst-case (slow) or

best-case (fast) corners. These wafers also

demonstrated full functionality; the DRAM on the

slow skewed wafers operates correctly at over

125MHz (design speed was 100MHz). To evaluate

data retention time, we devised tests that leave one

or more pages of memory quiescent (and

unrefreshed) for long, variable periods of time.

During these time periods, the tests run

memory-intensive code on other pages of memory,

in order to maximize noise. These tests were run on

wafers mounted on a „hot chuck‟, a device that

allows the wafer temperature to be controlled fairly

accurately. All memory data failures were of the

form of initially-high storage nodes going low,

confirming the hypothesis that junction leakage is

the main data-loss mechanism at work in these

DRAMs.

V. CONCLUSION

We presented Retention-Aware Intelligent DRAM

Refresh (RAIDR), a low-cost modification to the

memory controller that reduces the energy and

performance impact of DRAM refresh. RAIDR

groups rows into bins depending on their required

refresh rate, and applies a different refresh rate to

each bin, decreasing the refresh rate for most rows

while ensuring that rows with low retention times

do not lose data. To our knowledge, RAIDR is the

first work to propose a low-cost memory controller

modification that reduces DRAM refresh

operations by exploiting variability in DRAM cell

retention times.

REFERENCES

[1] Poulton, J., Fuchs, H., Austin, J., Eyles, J.,

Heinecke, J., Hsieh, C-H, Goldfeather, J., Hultquist,

J., and Spach, S., "PIXEL-PLANES: Building a

VLSI-Based Graphic System," Proceedings of

Conference on Advanced Research in VLSI, 1985, pp

35-60.

[2] Fuchs, H., Poulton, J., Eyles, J., Greer, T.,

Goldfeather, J., Ellsworth, D., Molnar, S., Turk, G.,

and Israel, L., "A Heterogeneous Multiprocessor

Graphics System Using Processor-Enhanced

Memories," Computer Graphics (Proc. of SIGGRAPH

'89), Vol. 23, No. 3, pp 79-88.

[3] Molnar, S., J. Eyles, and J. Poulton, "PixelFlow:

High-Speed Rendering Using Image Composition,"

Computer Graphics (Proc. of SIGGRAPH '92), Vol.

26, No. 2, pp. 231-240.

111 International Journal for Modern Trends in Science and Technology

D. Singa Reddy and B. Govardhana : Time and Low Power Operation Using Embedded Dram to Gain Cell Data
Retention

[4] Speck, D., “The Mosaic Fast 512K Scalable CMOS

dRAM,” Proceedings of Conference on Advanced

Research in VLSI, 1991, pp 229-244.

[5] B. Keeth et al., DRAM Circuit Design: Fundamental

and High-Speed Topics. Wiley-Interscience, 2008.

[6] Hybrid Memory Cube Consortium, “Hybrid Memory

Cube,” 2011. Available:

http://www.hybridmemorycube.org/

[7] JEDEC, “DDR SDRAM Specification,” 2008.

[8] JEDEC, “DDR2 SDRAM Specification,” 2009.

[9] JEDEC, “DDR3 SDRAM Specification,” 2010.

[10] K. Kim and J. Lee, “A new investigation of data

retention time in truly nanoscaled DRAMs,” IEEE

Electron Device Letters, 2009.

[11] Y. Li et al., “DRAM yield analysis and optimization by

a statistical design approach,” IEEE Transactions on

Circuits and Systems, 2011.

[12] M. J. Lyons and D. Brooks, “The design of a Bloom

filter hardware accelerator for ultra low power

systems,” in ISLPED-14, 2009.

[13] D. E. Knuth, The Art of Computer Programming, 2nd

ed. AddisonWesley, 1998, vol. 3.

[14] G. Marsaglia, “Xorshift RNGs,” Journal of Statistical

Software, 2003.

[15] M. V. Ramakrishna, E. Fu, and E. Bahcekapili,

“Efficient hardware hashing functions for high

performance computers,” IEEE Transactions on

Computers, 1997.

http://www.hybridmemorycube.org/

