

82 International Journal for Modern Trends in Science and Technology

International Journal for Modern Trends in Science and Technology

Volume: 02, Issue No: 10, October 2016

http://www.ijmtst.com

ISSN: 2455-3778

Improvement in Error Resilience in BIST using
hamming code

Radharapu Ravivarma1 | M. Sanjay 2

1PG Scholar, Vaagdevi College of Engineering, Telangana.
2Assistant Professor, Vaagdevi College of Engineering, Telangana.

To Cite this Article
Radharapu Ravivarma and M.Sanjay, Improvement in Error Resilience in BIST using hamming code , International
Journal for Modern Trends in Science and Technology, Vol. 02, Issue 10, 2016, pp. 82-87.

In the current scenario of IP core based SoC, to test the CUT we need to communication link between

Circuit Under Test and ATPG, so before applying to actual DUT. If there is a problem with this link, there may

be a lip in bit of test data. Compared to original test data, if there is a bit lip in the original data, the codeword

may change and hence the decompressed data will have a large number of bit deviation. This deviation in

bits can severely degrade the test quality and overall fault coverage which may affect yield. The error

resilience is the capability of the test data to resist against such bit lips. Here in this paper, the earlier

methods of error resilience is compared and a Hamming code based error resilience technique is proposed to

improve the error resilience capacity of compressed test data. This method is applied on Huffman code based

compressed test data of widely used ISCAS benchmark circuits. The fault coverage measurement results

show the effectiveness of the proposed method. The basic goal here is to survey the effect of bit lips on fault

coverage and prepare a platform for further development in this avenue.

KEYWORDS: Automatic Test Equipment (ATE), bit-lip; Compression; Fault Tolerance; Hamming code; Fault
Coverage; Area Overhead;, Bits Overhead

Copyright © 2016 International Journal for Modern Trends in Science and Technology

All rights reserved.

I. INTRODUCTION

Considering the today's scenario of fast

time-to-market and increasing test cost compared

to manufacturing cost, the use of Intellectual

Property (IP) course for gathering complex

functionality has been common. [1]. IP core based

system on chip(SoC) is becoming new paradigm in

the electronics based industry for its reusability

and ability to execute rich set of functionality in a

very short time. Multiple core on a SoC adds

complexity to the design, so it's become challenging

to test each core, as all core have different 1I0S,

different test pattens and different scan chain

lengths, etc. In general, SoC test challenge includes

the dificulty of distributing design inside the SoC

and its test development, the difficulty of accessing

the test in embedded core and finally optimization

of the SoC level test.

A test set for a SoC test includes test vectors for

each core. The total volume of these data can be

very high, can be in the scale of a gigabits which

need high storage facility, but on another way, it

increases the entire cost of the test. To highlight

these problems, test data compression techniques

are introduced. [2] [3].

Recently, many test data compression

techniques are developed to reduce test data

volume. For example, statistical test data

compression techniques like run length code,

frequency directed run length code [4][5][6],

Golomb code[5][7] Extended FDR [5], Modified

ABSTRACT

http://www.ijmtst.com/

83 International Journal for Modern Trends in Science and Technology

Radharapu Ravivarma and M.Sanjay : Improvement in Error Resilience in BIST using Hamming Code

Extended EFDR [5], VIHC coding[8] etc. The

comparison of these techniques is presented in [9

HDR]. Among such various test data compression

method like broadcast scan based methods, linear

decompression based methods and the code based

methods, the code based compression method inds

the most suitable for IP cores where the internal

architecture of core is hidden rom system

Integrator. [9].

When the compressed data is being transferred

rom ATE to SoC, if there is any distortion or noise

in the communication link, it may happen that the

test data bit may lip. This bit lip even though may

not be so serious for uncompressed data, but gives

serious results in case of compressed data because

it may change one or many codewords in

compressed data and correspondingly

regenerated-decompressed data will be different

from original data. When such deviated data will be

applied to DUT for testing, definitely will not give

the test quality which was intended. The fault

coverage may be affected and hence the yield will

be also affected.

The capability of test data to resist the effects of

such bit lips is called error resilience. Fault

endurance, reliability and security are the major

concern for resilience of test data. So the error

resilience can be defined as the ability of a design

under test (DUT) to execute proper unction in the

presence of bit lip error, bit deletion, burst error

and missing fragmentations and to recover from

any service degradation. These stuffs are essential

in a testing where the validity of data depends on

the reliable, secure and correct function of the

device under test. Considered systems include, but

are not limited to, infrastructures, computer

networks, including adhoc and mesh networks,

web-based systems, or service­ oriented

architectures, embedded systems, manufacturing

systems, control systems and more. Much work

has been done already on evaluation, analysis and

enhancement of error resilience of test data, but a

lot remains to be done. The combination of

performance and dependability, performability,

has been widely studied. But aspect, like,

improvement in error resilience is still ongoing

work. As the systems are changing day by day as

per its characteristics, it's a high need to expand

work in this area device under test. Considered

systems include, but are not limited to,

inrastructures, computer networks, including

adhoc and mesh networks, web-based systems, or

service­ oriented architectures, embedded systems,

manufacturing systems, control systems and

more. Much work has been done already on

evaluation, analysis and enhancement of error

resilience of test data, but a lot remains to be done.

The combination of performance and

dependability, performability, has been widely

studied. But aspect, like, improvement in error

resilience is still ongoing work. As the systems are

changing day by day as per its characteristics, it's a

high need to expand work in this area The paper

has addressed methods and tools to describe,

measure, evaluate benchmark and improve

resilience concening resilience of test data. Here in

this paper, we have calculated the effect of bit lips

on fault coverage of widely cited ISCAS benchmark

circuits for both the case : I. when normal

(uncompressed) data is used through serial link

and 2. When the compressed data is used and the

comparisons are analyzed. Further we have

proposed the Hamming code base approach to

improve the error resilience and its effectivity is

analyzed by calculating the bit overhead and

improvement in fault coverage. The basic goal here

is to prepare a platform for further development to

improve error resilience capability in case of

compressed test data being used for IP core based

SoC

II. THE SIGNIFICANCE OF BIT FLIP N TEST

DATA

A. Why Bit Flp Occurs?

Bit lips can occur in many ways during the

transmission of test data from ATE to OUT. Noise

can affect the interfacing line between the ATE and

design under test, which can raise the errors

because of bit lip. Moreover, Bit lips can also be

generated when test inputs are generated as a pin

waveform. So it can be said that bit lip can be

reduced if the ATE test program and the DUT is

fully debugged. However, as testing is done at very

high speed, eror in few bits(bit lips) must be

considered as unavoidable in ATE environments

[10].

B. fect of Bit Flip on Fault Coverage

During the development of the test program,

Bit-lips can produce diverse effects over its entire

testing environment. Throughout the

manufacturing test, a bit-lip affects the test data in

such a way that the coverage of inaccurate test set

can be reduced (as affected by bit-lips). As a result,

there is a hike in cost incorporated with debugging

and development, while decreases productivity.

84 International Journal for Modern Trends in Science and Technology

Radharapu Ravivarma and M.Sanjay : Improvement in Error Resilience in BIST using Hamming Code

C. Experimental Set-up to measure the efect ofBit-lip on

Fault Coverage

Here the full scan version of the ISCAS'89 circuits

is used as a platform to evaluate different bit lip

effects and associated fundamentals. The

experiments were performed on test data generated

by MINTEST tools. In the given test cubes, all

unspecified bits are filled with MT ill technique and

then re-ordered using the Artificial Intelligence (AI)

based algorithm[II][12]. Generally the occurrence of

bit lips is considered in two ways i.) A bit lip

probability ii.) Bit lip count. In this paper, we are

focusing mainly on bit lip count. The bit lip

locations are uniformly spread over the entire test

vector. So the bit lips are uniformly distributed to

the entire bit stream and can be evaluated in all

conditions. Here, for simplicity bit lip count of 1,2 5

and 10 are used for experimental framework. Here

each bit lip count is repeated for 25 times and

average fault coverage is calculated. The Huffman

compression technique is used for data

compression with symbol size of 4 bits [13].

D. fect of Bit Flip on Uncompressed Data

As we know, bits in compressed test data carries

more information as compared to original bit

stream, So bit lip is important for test data

compression circuits. To understand the minimum

effect of bit lip, it is understand that fault coverage

loss with original test data due to bit lip represents

lower bound on the eror resilience. For the proper

understanding, bit lips are uniformly injected in

the test data and corresponding fault coverage is

measured. Table I shows the fault coverage due to

bit lip in uncompressed test data. The average

coverage loss is 0.1 to 0.32% for 1 bit, 2 bit,S bit

and 10 bit lips.

III. EFFECT OF BIT FLIP ON COMPRESSED

TEST DATA

Assume that there are V test vectors which are

the source of combinational and sequential test

data. In the compression technique discussed

above, test vectors are partitioned into given

symbol size ((sill) S I S S) where S is the total

number of different symbols. Ouring compression,

each symbol Sj is mapped to its associated

codeword. The compressed test data can be written

as an ordering n of the codeword (C,ll),

Cn(2),....C,lN)), where N is the total number of

symbols per codeword in the test set. The different

effects with bit lips are described below.

A. Propagation and sht efect

As it is discussed, bit lip can change the

compressed sequence in a complicated manner,

which depends on a number of symbols,

compression ratio, length of symbol or codeword

and ordering technique used. In general, bit lip can

affect codeword in two ways.

Codeword which is affected is partitioned into(K �

1) valid codeword.

Codeword which is affected is partitioned into(K �

0) valid codeword and so called dangling suix,

which is not a valid code word.

Example: Assume that codeword for the Huffman

compression is given as 0,10,110,I11.

Now if there is a bit lip in 15t codeword as given

in example, then it becomes'l' which is not a valid

codeword. If there is a bit lip in the 1st bit of 2nd

codeword then it becomes "00", Which gives two

different codewords '0'-'0'. But if there is a bit lip in

2nd bit of 2nd codeword then it becomes "11"

which is not valid codeword (only dangling sufix).

As shown in case I, if there is a bit lip in the

codeword Cn(i), then codeword C[(i+I) to Cn(N) will

remain unaffected. So the bit lip will generate K

additional codeword C,li-I) and Cn(i+I). As a result,

correct sequence of codeword will start rom C,li+1),

shited by K additional codeword as shown in fig 3.

Fig 3. Conceptual view of the shit effect due to a bit lip

Now, as shown in case II, if there is a bit lip in the

codeword C,li) and if bit lip creates a dangling suix,

then that dangling sufix will form a valid codeword

with bits of remaining codeword starting from

Cn(i+I). This phenomena is called as propagation of

bit lipto codeword C,li+1). Now, if codeword C,li+1)

also let with dangling sufix, then that dangling suix

will make codeword with bits of C,li+2) codeword. If

Cn(i+j) doesn't have dangling sufix, then codewords

C[(i+j+1) to C[(N) will be unaffected which is shown

in fig 4.

S820 99. 14 98. 92 98. 92 98. 92

S832 97. 17 97. 17 97. 17 97. 17

S838 99. 67 99. 67 99. 67 99. 67

85 International Journal for Modern Trends in Science and Technology

Radharapu Ravivarma and M.Sanjay : Improvement in Error Resilience in BIST using Hamming Code

Above two cases signifies the relationship

between shit and propagation effect due to bit lip.

In the 1st case, codeword Cn(i) is lost and forms

another valid codeword which shits remaining code

words by at least one codeword.

In the 2nd case, due to bit lip, codeword j+I are

lost and dangling suffix will make a codeword by

using bits of next codeword. So the remaining code

words will shift by minimum one codeword. So it

can be said that propagation and shit effect can be

differentiated in terms of the number of lost

codeword. As it can be seen in the diagram, shit is

the special case of propagation where only one

codeword is lost, propagation always comes with

shit where number of lost codeword depends on the

location of the bit lip.

B. Synchronization loss

After decompression, corrupted sequence of bits

must appear in the same sequence as it would

there in case of no bit flipping. In case of bit

flipping, decompressed sequence will be disturbed

by the corrupt sequence of bits. If these corrupt bit

sequences are different than original one, then

there is a loss of synchronization and hence

decoding of the received code will be difficult.

C. Bit Flip in case Differentiated Vectors

In the compression technique described above,

data is first of all, re-ordered and then

differentiation is done to maximize compression.

Assume that 01, O2, 03 • . • . • . . • . . On is the

difference vector which can be defined as

01=V1

O2= V2 XOR VI

O"=V,, XOR V,,_1

At the decompression side assigned vectors are

retrieved in the following way.

VI = DI

Vz = Dz XOR VI

V" = 0" XOR 0,,-1 XOR02 XOR 01

Now in this process, if bit lip occurs in bit OJ, then

it will affect on all subsequent vectors during

decompression and all vector rom i to n will be

affected.

D. Effect of Bit Flip on Fault Coverage of
Compressed Data

Assume that the test data is compressed with the

compression ratio of 30%. That means, there is

30% minimization in data volume. So it can be said

that each 70 bits in the compressed test set can be

expanded into 100 bits of the initial uncompressed

test set. These bits will be scattered over entire test

data, which can affect the multiple test vectors and

degrade the fault coverage. Table II shows the

average fault coverage with bit lip in Huffman

compressed ISCAS circuit test data.

IV. PROPOSED METHOD TOIMPROVEERROR

RESILENCE N CASE OF BIT FLIP

In the previous section, importance of bit lip and

its negative impact on fault coverage was

described. As a solution of that, the new technique

is developed to improve the fault coverage and

hence error resilience with compressed test data. A

parity bit based error resilience method is

described in [14]. Here, in this paper, the advance

method for error resilience is proposed based on

Hamming distance.

A. Hamming Code based Technique

In communication, The Hamming code is called

as linear error code which detects and corrects

errors. At the most, it can detect two bits of error

and corrects one bit. If the hamming distance

between received and transmitted bit pattern is

86 International Journal for Modern Trends in Science and Technology

Radharapu Ravivarma and M.Sanjay : Improvement in Error Resilience in BIST using Hamming Code

less than one, then it is called as reliable

communication. Hamming code is like a binary

linear code. For each code m : 2, there will be m

parity bits and 2m -m+1 message bits. Hamming

code is the best example of the perfect code which

means this code matches the theoretical upper

bound on different code words for the given bits

and its strength to correct the error bits. If more

error correcting bits are added along with the

message and if such bits are arranged to get

different error results in different incorrect bits,

then bad bits can be identified. For example, in (7,

3) Hamming code, there is a chance of error in 7

single bits. So in that 3 parity bits not only signifies

the error in data, but also inds the position of the

error.

B. General algorithm

1. Signiies the bit numbers in binary form. I.e.

for 3 bit code, Bit I = 00I, Bit 2 = 01

2. Bit positions which are powers of 2 are

considered as parity bits. e.g. 2° - 1st bit as

parity bit

3. Consider all remaining bits as data bits.

4. Parity bits are calculated rom the different

combination of data bits as per the binary

structure of the bit position.

Parity bit I includes the data bits which

have least signiicant bit 'I' in their bit

location. i.e bit 1,3,5,7....

Parity bit 2 includes the data bits which

have least signiicant bit '1' in their bit

location. i.e bit 2,3,6,7,....

5. Calculate parity rom the message bits. For

simplicity, (7,3) hamming code is taken as

an example, where,out of 7 bits, 4 bits are

message bits (0], O2, 03, 04) and 3 bits are

parity bits (C], C2, C3). Assume that

message sequence given here is "0111"

CI = Dlxor D2xor 04 C1 = 0 xor 1 xor 1

C1 = 0

C2 = 01Xor 03xor 04 C2 = 0 xor 1 xor 1

C2 = 0

C3 = 02Xor 03xor 04 C3 = I xor 1 xor I

C3 = I

6. After calculating the parity, again form a

full sequence of hamming code. In our

example it becomes "0001111".

7. Now suppose at the receiver side instead of

"0001111", "0011111" is received. That

indicates the bit flipping at some location

8. At the receiver side, decode the code in

following mannerAl = Clxor 0lxor 02xor 04

AI = 0 xor I xor 1 xor I

Al = 1

A2 = C2xor 01Xor D3Xor D4 A2 = 0 xor 1 xor 1 xor

1

A2 = 1

A3 = C3xor D2xor D3Xor D4 A3 = 1 xor 1 xor 1 xor

1

A3 = 0

Where A), A2 and A3 bits are answer bits.

9. If A], A2 and A3 are zero, then there is no error in

the message. But if any bit is '1' then there is an

error.

10. Arranage A], A2 and A3 bits n reverse order.

A3A2Al = 011. That indicates there is an error at

the 3rd position in fmal hamming sequence. So

now lip that bit and solve the error.

Now apply this algorithm to compress test data.

Divide whole data set in to blocks of 4 bits. For

each 4 message bits calculate the parity bits and

detect and correct error.

V. EXPERIMENTAL RESULTS

So the main advantage of Hamming code is that

it removes bit lip error, so no loss of fault coverage

as shown in table III and hence it improves error

resilience. But the biggest disadvantage of this

method is bits overhead as shown in table IV

Table IV BITS Overhead with Hamming Technique

Bench

mark

Circuit

Bits Human

Communcation

Total Bits

Hamming

Code

Bits

Overhead

S27 18 35 17

 S298 406 714

 S344 390 680

 S349 420 735

 S382 714 1253

 S386 300 525

 S400 798 1400

 S420 928 1624

87 International Journal for Modern Trends in Science and Technology

Radharapu Ravivarma and M.Sanjay : Improvement in Error Resilience in BIST using Hamming Code

 S444 735 1288

 S510 402 707

VI. CONCLUSION

Through extensive simulation on the different

benchmark circuit, it is shown that the bit lip in

compressed test data impacts a lot on fault

coverage as compared to uncompressed test data.

But with the proposed Hamming code based

technique, impact of bit flipping on compressed

test data can be significantly nullify. So the

proposed technique can improve the error

resilience but at the cost of more bits overhead.

REFERENCES

[1] Y. Zorian, "Test requirements for embedded

core-based systems and IEEE PI50 0 ," in Proc.IEEE

Int. Test Coj, 1997, pp. 191-199.

[2] Touba NA,"Survey of Test Vector Compression

Techniques", IEEE D esign and Test of Computers,

20 06, 3(4), pp. 294- 30 3

[3] D. Ha M. Ishida and T. Yamaguchi. Compact: A

hybrid method for compressmg test data. IEEE VLSI

Test Symposium, pp. 62-69, 1998.

[4] U Mehta, N D evashrayee, K S D as Gupta,

"Combining Unspeciied Test D ata Bit Fil l ing

Methods and Run Length Based Codes to Estimate

Compression, Pow er nd Area overhead", IEEE

Annual Symposium on VLSI,pp-448,449,20 10

[5] U Mehta, N D evashrayee, K S D as Gupta,

"Run-Length-Based Test Data Compression

Techniques: How Far from Entropy and Power

Bounds?-A Survey", VLSI D esign, Hindawi Publ

ication Corporation, PP-9,20 10

[6] A. Chandra nd K. Chkrabarty. "Frequency-D irected

Run-Length (FD R) codes with appl ication to

system-on-a-chip test data compression," in

Proc.IEEE VLSI Test Symp., 20 0 1, pp. 42-47.

[7] A. Chandra and K. Chakrabarty, "System-on-a-chip

test-data compression nd decompression

architectures based on Gol omb codes," IEEE Trans.

Comput.-Aided Des. Integr. Circuits Syst., vol . 20 ,

no. 3, pp. 355-368, Mar. 20 01.

[8] P. Gonciari, B. AI-Hashimi, and N. Nicolici, "Variabl

e-l ength input Huffman coding for system-on-a-chip

test," IEEE Trans.Comput.-Aided Des.Inter.Circuits

Syst., vol . 22, no. 6, pp. 783-796, Jun. 20 03.

[9] U Mehta, N D evashrayee, K S D as Gupta," Weighted

Transition Based Reordering, Columnw ise Bit Fil l

ing, and D ifference Vector: A Power­ Aw re Test D

ata Compression Method", VLSI D esign, Hindaw

i Publ ication Corporation, PP-9,20 11.

[10] B. West, private communication, Credence Corp

[11] H Parmar, U Mehta, " A statistical test data

compression technique with adaptive bit ll ing nd AI

based reordering: optimization for compression and

scan power", Intenational Jounal of VLSI and Sinal

Processing Applications, Vol.I, Issue 2, May2011,pp

-15-24

[12] H Parmar, U Mehta, K D asgupta, N D evashrayee,"

Test D ata Compression Technique for IP Core

based SoC using Artiicial Intel l igence",

ASDAT,Jan 20 11/

[13] M Sharma," Compression using Hufnan Coding",

IJCSNS Intenational Jounal of Computer Science

and Network Securiy, VOL. 10 No. 5, May 2010 .

[14] U Mehta, R Trivedi, N Thakkar, "Error Resil ience in

Case of Test D ata Compression Techniques for IP

Core Based SoC", Intenational Journal of Advance

Research in Engineering and Technology, Vol ume 5,

Issue I, January (2014), page:24-35.

