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Reversible logic attains the attraction of researchers in the last decade mainly due to low-power 

dissipation. Designers’ endeavours are thus continuing in creating complete reversible circuits consisting of 

reversible gates. This paper presents a design methodology for the realization of Booth’s multiplier in 

reversible mode. So that power is optimised Booth’s multiplier is considered as one of the fastest multipliers 

in literature and we have shown an efficient design methodology in reversible paradigm. The proposed 

architecture is capable of performing both signed and unsigned multiplication of two operands without 

having any feedbacks, whereas existing multipliers in reversible mode consider loop which is strictly 

prohibited in reversible logic design. Theoretical underpinnings, established for the proposed design, show 

that the proposed circuit is very efficient from reversible circuit design point of view. 
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I. INTRODUCTION 

The field of reversible logic is achieving a growing 

interest by its possibility in quantum computing, 

low-power CMOS, nanotechnology, and optical 

computing. It is now widely accepted that the 

CMOS technology implementing irreversible logic 

will hit a scaling limit beyond 2016, and thus the 

increased power dissipation is a major limiting 

factor. Landauer‟s principle [1] states that, logic 

computations that are not reversible generate heat 

kT ln2 for every bits of information that is lost. 

According to Frank [2], computers based on 

reversible logic operations can reuse a fraction of 

signal energy that theoretically can approach 

arbitrarily near 100%. 

Rest of the paper is organized as follows: After 

illustrating the preliminaries of reversible logic 

gates in Section 2, we have presented the 

input-output vectors of popular reversible gates 

along with their quantum costs. Section 3 

concentrates on the main logic synthesis of the 

proposed reversible multiplier with the  conclude in 

Section 5 discussing the main contribution and the 

future work. 

 

II. LITERATURE SURVEY 

 this section, basic definitions and ideas related 

to reversible logic are presented. 

a) Definition 1: A Reversible Gate is a k-input, 

k-output (denoted by k_k) circuit that produces a 

unique output pattern [5]–[8] for each possible 

input pattern. Reversible Gates are circuits in 

which the number of outputs is equal to the 

number of inputs and there is a one to one 

correspondence between the vector of inputs and 

outputs, i.e., it can generate unique output vector 

from each input vector and vice versa. A reversible 

circuit must incorporate reversible gates in it and 

the number of gates used in a design is always a 

good complexity measure for the circuit. It is 

always desirable to realize a circuit with minimum 

number of gates. Let the input vector be Iv, output 

vector Ov and they are defined as follows, Iv = (I1; 

I2; : : : ; Ik) and Ov = (O1;O2; : : : ;Ok). For each 

particular k, there exists the relationship Iv  ! Ov. 

b) Definition 2: Unwanted or unused output of a 

reversible gate (or circuit) is known as Garbage 

Output. More formally, the outputs, which are 

needed only to maintain reversibility, are called 

garbage outputs. While performing EXOR 
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operation with a Feynman gate (defined in Table I), 

the second output should be called as garbage, as 

shown in Fig.1 with 
 

 
 

Figure 1.   Feynman gate with target and garbage output. 

 

c) Definition 3: The delay of a logic circuit is the 

maximum number of gates in a path from any 

input line to any output line. The delay of the 

circuit in Fig. 1 is obviously 1 as it is the only gate 

in any path from input to output.  

d) Definition 4: The quantum cost (QC) of every 

2×2 gate is the equal (=1) [16], while a 1×1 gate 

costs nothing since it can be always included to 

arbitrary 2×2 gate that precedes or follows it. Thus, 

in first approximation, every permutation of 

quantum gate will be built from 1×1 and 2×2 

quantum primitives and its cost is calculated as 

the total sum of 2×2 gates that are used in the 

circuit.  Now we define some popular reversible 

gates in Table I with their corresponding 

input-output vectors and quantum cost. 

 

III. PROPOSED REVERSIBLE BOOTH’S MULTIPLIER 

In this section, in a gradual approach we show 

the design of reversible array multiplier using 

Booth‟s algorithm. Implementing the Booth‟s 

method by a combinatorial array first requires a 

reversible multi-function cell capable of addition, 

subtraction and no operation (or skip), which we 

call as B cell according to the convention. The 

various function of B cell is selected by a couple of 

control lines named as H and D. The control signal 

is generated by another control cell which is named 

as C cell. 

A. Design of C Cell 

The C cell is the basic unit of control circuitry of 

the original array multiplier. The input of this cell 

(XiXi−1) implies two adjacent bits of the multiplier 

operand. The cell generates the required control 

signal named as H and D [17] according to the 

original multiplier algorithm. The calculation of H 

and D are determined by the following equations: 

   

H = Xi ⊕ Xi−1 and D = XiXi−1 (1) 

 

The reversible design of C cell (Fig. 2(a)) consists 

of a 3×3 TS-3 gate, a Fredkin gate. The third input 

of the Fredkin gate  is set to zero, which act as a 

control input for the gate and generates the 

product (after complementing the first input) of 

other two inputs (denoted as „D‟) as the quantum 

cost of 3×3 TS-3 Gate and Fredkin Gate is 2 and 5, 

respectively. However, it will produce a quantum 

cost of 4 if we design according to the one shown in 

Fig. 2(c). 

 

B.  Design of B Cell 

The B cell is a multi-function cell, where various 

functions include addition, subtraction, 

no-operation. These functions are defined by the 

following logic equations: 

Z = a ⊕ bH ⊕ cH = a ⊕ (b ⊕ c)H  (2) 

Cout = (a ⊕ D)(b ⊕ c) ⊕ bc 

Here Z is the result of addition or subtraction and 

Cout indicates the carry output. The cell operates on 

three operands a, b, c where a is the propagated 

result from a previous B cell, b is a multiplicand bit 

and c is the carry-in bit. H and D are the control 

signal generated by the corresponding C cell. When 

HD=10, these equations reduce to the usual full 

adder equations: 

Sum = a ⊕ b ⊕ c 

Cout = ab ⊕ c(a ⊕ b)           (3) 

When H=0, Z becomes a and the carry lines play no 

role in the final result. Table II summarizes the 
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function of this cell. 

 
 

The B cell is designed (shown in Fig. 3) with the 

well-known TS-3 Gate, MTSG, and Peres Gate. The 

MTSG Gate is a 4×4 Reversible gate which itself 

provides a full adder realization when the control 

bit is zero. Although, the MTSG [15] is a modified 

version of TSG [3], due to complex input-output 

relationship of TSG, the gate is very much 

inefficient in terms of quantum realization (e.g., 

QC(TSG)=13), while the QC of MTSG is less than 

half of the QC of TSG (e.g., QC(MTSG)=6). Hence, 

instead of using TSG gate, we use the modified TSG 

gate in our design methodology. The MTSG 

generates very simple output conserving the 

reversibility prop-erty. In addition, providing 0 in 

the D input, we can easily realize the Full-adder 

from MTSG. In Fig. 3(a), the output 

 

 
 

 
 

Figure 3.   (a) Circuit diagram of B cell (G* indicates the 

garbage output) (b) Block diagram of B cell 

 

of TS-3 gate is fed as input to the MTSG gate and 

also to the Peres gate. The required output Z is 

produced from the Peres gate and the carry out bit 

is produced from the MTSG gate. The control signal 

HD and the same multiplicand bit b used in this 

cell is regenerated as a byproduct to activate the 

next cell. Since fan out is prohibited in reversible 

circuit, this additional function is taken into 

concern of each B cell. 

 
 

C.  Construction of n × n Reversible Twos 

Complement Array Multiplier 

In this section, an n × n reversible Booth‟s 

multiplier is realized by the proposed B cell and C 

cell. The architecture of the n×n array multiplier, 

shown in Fig. 4 takes the form of a trapezium. All 

the C cells at the right together comprise the 

control circuitry. If X = Xn, Xn−1, Xn−2 . . . X0 and Y = 

Yn, Yn−1, Yn−2 . . . Y0 denote the multiplier and 

multiplicand, respectively then the multiplier bits 

are fed to the C cells, and a implicit zero is added 

with the multiplier bits. There are total n rows and 

each row contains a C cell, hence the total n 

number of C cells are required in the design. The 

top most row of this two dimensional architecture 

contains (2n-1) B cells. The second row consists of 

(2n-2) B cells. Continuing in this fashion the 

bottom line only contains n number of B cell. All 

the multiplicand bits are fed to the upper layer B 

cells (through the input line indicated by „b‟ in Fig. 

3 ). The „b‟ inputs of the left side of (n-1) B cells are 

set to the sign extended Y for addition and 

subtraction. The a inputs (indicates the result of 

sum or subtract from the corresponding upper 

layer cell) of the upper layer B cells and the carry 

inputs of the rightmost B cells are set to zero. 

 

D. Multiplication Example by a 4×4 Reversible 

Booth’s Mul-tiplier 

This section illustrates an example of 

multiplication by the proposed design. It shows the 

value of each input and output line for every single 

cell for the particular example. Assume that the 

two operands are −3 and 5, and so the result 

should be −15. Obviously the negative input that is 

the multiplicand will be in twos complement form. 

Hence, multiplicand Y =1101 (in twos complement 

form), multiplier X= 0101 (5), an implicit 0 is 

added, which becomes, X=01010 and they are fed 

into the C cells in the following manner. 

 

01: HD=10 implies add. 

10: HD=01 implies 

subtract. 01: HD=10 

implies add. 10: HD=01 
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implies subtract. 

 

Thus, the 4×4 circuit (shown in Fig. 5) generates 

1110001, which is -15 in two‟s complement. 

 
 

Figure 4.   n × n reversible Booth’s multiplier. 
 

 
 

Figure 5.   4×4 reversible Booth’s multiplier. 

 

IV. EVALUATION OF THE PROPOSED DESIGN 

In this section necessary theorems are given to 

evaluate the proposed design. All the theorems 

provide lower bounds for number of gates, garbage 

outputs, circuit delay and quantum cost. 

Theorem 1: Let NGT be the number of gates 

required to realize an n × n Reversible Multiplier 

where n is the number 

 

 

of bits, then 

9 

   

NGT ≥ n2 + 1 (5) 

 

   

 2  

 

Proof: An n× n Reversible Multiplier requires 3/2 

n(n-1)B cells and each B cell contains 3 reversible 

gates. Moreover, n LB cells (B cells in left most side) 

are required along with the B cell each of which 

contains 2 reversible gates. To perform the control 

operation n C cells are required, where each of 

them consists of 2 gates. Furthermore, (n/2+1) FGs 
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are required to perform the copy operation. As NGT 

is the total number of gates to realize the n × n 

Multiplier, according to 

 

the above definition:       

NGT ≥ 

3 

n(n − 1)3 + 2n + 2n + 

n 

+ 1 

 

   

2 2  

   

9 

  (6)  

  

NGT ≥ n2 + 1 

   

       

   2    

 

Similarly, we propose the following theorems that 

can be proved in the similar way. 

 

Theorem 2: Let n be the number of bits in the 

Reversible Multiplier and NGB denotes the number 

of garbage outputs, then 

 

NGB ≥ n(4n + 1) − 1 

 

Proof: Realization of a LB cell requires no less than 3 

garbage output. Further, each C cell generates 2 garbage 

output and Total 2n number of garbage is added for n C 

cells. reversible multiplier, hence   

NGB ≥ 

3   

2 n(n − 1)2 + 3n + 2n + (n − 1) (7)  

NGB ≥ n(4n + 1) − 1 

 

Theorem 3: Let P __, P _ and P are the delay of B, 

LB and C cell respectively in the n × n reversible 

multiplier. Let, DF be the delay of a FG and DRM 

denotes the total delay of the reversible multiplier, 

then 

 

DRM ≥ (2n − 2)P  + nP  + P + DF 

 

 

LB cell, one C cell and a FG along with the B cell. 

Hence, considering DRM as the total delay, 

 

DRM ≥ (2n − 2)P  + nP  + P + DF (8) 

Theorem 4: Let QC(RM) be the total quantum 

cost to realize an n × n reversible multiplier where n 

is the number of bits, then 

 

QC(RM) ≥ 

18n2 + 13 

n 

+ 1 (9) 

 

   

2   

 

Proof: Each B cell tenders a quantum cost of 12 

(QC(TS-3)+QC(MTSG) + QC(PG)= 2+6+4). An n × n 

reversible multiplier requires n/2(3n − 5) such B 

cells. The B cell of the column before the last one 

uses FG instead of TS-3 since it does not need to 

feed control signal D to the last level of LB cell. 

Thus, each B cell of this specific column incurs a 

quantum cost of 11. Moreover the quantum cost of 

each individual LB cell is 5 (QC(FG)+ QC(PG)= 1+4). 

Beside this, the n number of C cells contribute 7n 

to the quantum cost and the remaining (n/2+1) 

FGs are responsible for a QC of (n/2+1). As QC(RM) 

is the total quantum cost to realize the n × n 

multiplier, according to the aforementioned 

definition: 

 

QC(RM) ≥ n2 (3n − 5)12 + 11n + 5n + 7n + n2 + 1 

≥ ≥ 18n2 + 13 n2 + 1 

(10) We also evaluate the 4×4 version of the 

proposed Booth‟s multiplier  with  the  two  existing  

designs.  To  compute  the necessary parameters 

for a 4×4 array multiplier the instance of the 

generalized equations are taken and the 

calculation is carried out by putting the value of n = 

4. Existing method of Bhardaj and Deshpande [4] 

do not provide any generalized equation to 

calculate the delay of a circuit, while the other 

method in [3] (shown in Fig. 6 for n=4) uses fan out 

which is strongly prohibited in reversible logic 

design. On the other hand, the proposed circuit is 

designed avoiding the fan outs. The design of [4] 

also failed to preserve the constraint of reversible 

logic design, i.e., loop in circuit. The proposed 

reversible multiplier works without using feedback 

and also can operate on both positive and negative 

numbers whereas the existing reversible multiplier 

work as serial multiplier. This achievement is 

obtained in expense of delay and preserving 

Reversibility 

V. CONCLUSION 

This paper presents a Radix-2 Booth‟s Multiplier 

implementation using Reversible Gates. A full 

design of n × n reversible array multiplier is 

proposed which is based on the conventional 

irreversible design. The evaluation of the proposed 

circuit is performed from all the aspects of 

reversible logic. Additionally, the quantum cost of 

the proposed cell (dif-ferent sub-sections of the 

entire circuit) as well as the whole design has been 

analyzed. The proposed reversible multiplier 

architecture outperforms the existing design in 

terms of design methodology by preserving the 

constraints of reversible logic synthesis. The key 

achievement of the design is, it is capable which is 

not present in the existing circuits considered in 
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this paper. Current research is investigating the 

extension of the proposed logic for Radix-4 

approach  of working with both signed and 

unsigned numbers. 

 
Figure 6.   4 × 4 reversible Booth’s multiplier [3]. 
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