

174 International Journal for Modern Trends in Science and Technology

As per UGC guidelines an electronic bar code is provided to seure your paper

International Journal for Modern Trends in Science and Technology, 9(06): 174-183, 2023
Copyright © 2023International Journal for Modern Trends in Science and Technology

ISSN: 2455-3778 online

DOI: https://doi.org/10.46501/IJMTST0906026
Available online at: http://www.ijmtst.com/vol9issue06.html

Verification Of Asynchronous FIFO using System

Verilog

S. Girish Gandhi | Md. Mukthadeer Ahamed | R. Raman Sravan Kumar | V. Sunil | P. Ambica Sravan Kumar

Department of Electronics and communications, Narayana engineering college, Nellore, Andhra Pradesh, India.

To Cite this Article

S. Girish Gandhi, Md. Mukthadeer Ahamed, R. Raman Sravan Kumar, V. Sunil and P. Ambica Sravan Kumar.

Verification Of Asynchronous FIFO using System Verilog. International Journal for Modern Trends in Science and

Technology 2023, 9(06), pp. 174-183. https://doi.org/10.46501/IJMTST0906026

Article Info

Received: 21 May 2023; Accepted: 12 June 2023; Published: 18 June 2023.

A FIFO is a "First In First Out" memory queue between any FIFO asynchronous domains with simultaneous write and read

access to and from the FIFO, these accesses being on different clocks. The FIFO has input ports like data input (write), write clock,

read clock, reset and output ports like FIFO full flag, data out (read) and FIFO empty flag. It also has control signals like write

enable and read enable. The most important signals that control the FIFO operation are the write pointer and the read pointer.

These pointers in the case of Synchronous FIFO operate in a single clock while in the case of Asynchronous FIFO operate in two

clocks, write clock and read clock respectively. FIFO can be either Synchronous or Asynchronous. The basic difference between

them is that the entire operation of Synchronous FIFO is entirely dependent on the clock whereas the write operation and read

operation of Asynchronous FIFO are asynchronous to each other. In this project a Novel approach to designing an Asynchronous

FIFO is used. Instead of taking a separate bit to identify whether the FIFO is full or empty, it is used to identify if the FIFO is full

or empty. As the designs gets complex, the probability of occurrence of bugs increases. This necessitated the introduction of the

verification phase for verifying the functionality of the IC and to detect the bugs at an early stage. In this project, the

Asynchronous FIFO design is verified by using System Verilog. The design uses a grey code counter to address the memory and for

the pointer.

KEYWORDS: Asynchronous FIFO, Setup Time, Hold Time, Metastability, Verification

1. INTRODUCTION

FIFO (First In First Out) is a buffer that stores data in

a way that data stored first comes out of the buffer first.

Asynchronous FIFO are most widely used in the System

on chip (SOC) designs for data buffering and flow

control [7]. As the System on chip involves multiple IPs

operating at different speeds. Generally, Asynchronous

FIFO is used when the write operation is faster than the

read operation. Therefore, they need to be synchronized.

Otherwise, it may lead to the lead to the metastability

conditions. This will affect the operation of the chip. To

overcome this problem Asynchronous FIFOs are used.

The Asynchronous FIFO is a First-In-First-Out memory

queue with control logic that performs management of

the read and write pointers, generation of status flags,

and optional handshake signals for interfacing.

FIFO architectures inherently have a challenge of

synchronizing itself with the pointer logic of other clock

domain and control the read and write operation of FIFO

memory locations safely with the user logic. Data is

ABSTRACT

https://doi.org/10.46501/IJMTST0906026
http://www.ijmtst.com/vol9issue06.html
https://doi.org/10.46501/IJMTST0906026
https://doi.org/10.46501/IJMTST0906026
http://www.ijmtst.com/vol9issue06.html

175 International Journal for Modern Trends in Science and Technology

written into the FIFO by write clock domain and data is

read from the FIFO by read clock domain where the two

clock domains are asynchronous to each other [5].

1.1 Synchronous FIFO

Synchronous FIFO are the ideal choice for

high-performance systems due to high operating speed.

As shown in Fig. 1 Synchronous FIFOs also offer many

other advantages that improve system performance and

reduce complexity. These include status flags:

synchronous flags, half-full, programmable

almost-empty and almost-full flags. Synchronous FIFOs

are easier to use at high speeds because they use

free-running clocks to time internal operations.

Fig 1: Synchronous FIFO

1.2 Asynchronous FIFO

Asynchronous FIFO refers to a FIFO where the data

values are written to the FIFO at a different rate and data

values are read from the same FIFO at a different rate,

both at the same time. The reason for calling it

Asynchronous FIFO as shown in Fig. 2, is that the read

and write clocks are not Synchronized.

The basic need for an Asynchronous FIFO arises when

we are dealing with systems with different data rates.

For the rate of data flow being different, we will be

needing Asynchronous FIFO to synchronize the data

flow between the systems. The main work of an

Asynchronous FIFO is to pass data from one clock

domain to another clock domain.

Fig 2: Asynchronous FIFO

2. LITERATURE REVIEW

2.1 Clock Domain Crossing

FIFO is a buffer that stores data in a way that data

stored first comes out of the buffer first. Asynchronous

FIFO are most widely used in the System on chip (SOC)

designs for data buffering and flow control [7]. In digital

electronic design a Clock Domain Crossing (CDC), or

simply clock crossing, is the traversal of a signal in

a synchronous digital circuit from one clock domain into

another. If a signal does not assert long enough and is

not registered, it may appear asynchronous on the

incoming clock boundary. A synchronous system is

composed of a single electronic oscillator that generates

a clock signal, and its clock domain the memory

elements directly clocked by that signal from that

oscillator, and the combinational logic attached to the

outputs of those memory elements. Because

of speed-of-light delays, timing skew, etc., the size of a

clock domain in such a synchronous system is inversely

proportional to the frequency of the clock.

As shown in Fig. 3, A few modern CPUs have such a

High-Speed clock, that designers are forced to create

several different clock domains on a single CPU chip.

Fig 3: Clock Domain Crossing

A. Metastability

Metastability is one of the major defects. A flip-flop

has metastability issues if the clock and data change very

closely in time, causing the output to be at an unknown

logic value for an unbounded period of time. While

metastability cannot be eliminated, it is usually tolerated

by adding a multi-flop synchronizer to control

asynchronous boundaries and using those synchronizers

to block the destination of an asynchronous boundary

when its source is changing. FIFOs, 2-phase and 4-phase

https://www.amazon.in/shop/semiconductorclub
https://www.amazon.in/shop/semiconductorclub
https://www.amazon.in/shop/semiconductorclub
https://www.amazon.in/shop/semiconductorclub
https://semiconductorclub.com/
https://en.wikipedia.org/wiki/Clock_signal
https://en.wikipedia.org/wiki/Synchronous_circuit
https://en.wikipedia.org/wiki/Digital_circuit
https://en.wikipedia.org/wiki/Clock_signal
https://en.wikipedia.org/wiki/Flip-flop_(electronics)#Timing_considerations
https://en.wikipedia.org/wiki/Asynchronous_communication
https://en.wikipedia.org/wiki/Electronic_oscillator
https://en.wikipedia.org/wiki/Clock_signal
https://en.wikipedia.org/wiki/Clock_domain
https://en.wikipedia.org/wiki/Combinational_logic
https://en.wikipedia.org/wiki/Speed_of_light
https://en.wikipedia.org/wiki/Clock_skew

176 International Journal for Modern Trends in Science and Technology

handshakes are typical structures used for this type of

synchronization.

Glitches on asynchronous boundaries can also

cause defects, since a glitch on an asynchronous crossing

can trigger the capture of an incorrect signal transition.

Data coherency issues occur in a design when multiple

synchronizers settle to their new values in different

cycles and subsequently interact in downstream logic.

The list goes on. While the concepts and methodologies

for verification of such issues have been extensively

researched in the past ten years, practical solutions have

been offered primarily at the IP-level. Little work has

been attempted to tackle clock domain crossing (CDC)

verification signoff of large system-on-chip (SoC)

designs.

B. Data Loss

Whenever a new source data is generated, the

destination domain may not capture it in the very first

cycle of the destination clock because of metastability. As

long as each transition on the source signal is captured in

the destination domain, data is not lost. In order to

ensure this, the source data should remain stable for

some minimum time, so that the setup and hold time

requirements are met with respect to at least one active

edge of destination clock.

If the active clock edges of C1 and C2 arrive close

together, the first clock edge of C2, which comes after the

transition on source data A, is not able to capture it. The

second edge of clock C2 finally captures the data.

However, if there is sufficient time between the

transition on data A and the active edge of clock C2, the

data is captured in the destination domain in the first

cycle of C2. Hence, there may not be a cycle - by - cycle

correspondence between the source and destination

domain data. Whatever the case, it is important that each

transition on the source data should get captured in the

destination domain. For example: Assume that the

source clock C1 is twice as fast as the destination clock

C2 and there is no phase difference between the two

clocks. Further assume that the input data sequence “A”

generated on the positive edge of clock C1 is “00110011”.

The data B captured on the positive edge of clock C2 will

be “0101”. Here, since all the transitions on signal A are

captured by B, the data is not lost. However, if the input

sequence is “00101111”, then the output in the

destination domain will be “0011”. Here the third data

value in the input sequence which is “1”. In order to

prevent data loss, the data should be held constant in the

source domain long enough to be properly captured in

the destination domain.

2.2. Problem In Multi Clock Domain

It is problematic to synchronize multiple changing

signals from one clock domain into a new clock domain

and assuring that all the signals are synchronized to the

same clock cycle in the new clock domain.[3]

Multiple clock domain designs are difficult to

implement as compared to single clock designs. This is

because there is single clock, in the single clock design

that goes through the entire design. The problem faced

in the multiple clock domain designs are Metastability,

Setup & Hold time violations.

Setup time is the minimum amount of time

required for which the data input should remain stable

prior to the arrival of clock pulse so that the data are

reliably sampled by the clock. Hold time is the minimum

amount of time for which the data input should remain

stable after the arrival of clock pulse so that the data is

reliably sampled.[1]

Fig 4: Setup and Hold Time Violations

Fig 5: Setup and Hold Time Violations

A. Single Clock Domain

A clock domain is a section of the design that is driven

by one or more clocks that are coupled to one another. A

clock with a frequency of 10MHz is handled as a single

177 International Journal for Modern Trends in Science and Technology

clock domain design, as a half clock is powered

by a 10MHz clock. As Shown in below figure 6,

Fig 6: Single Clock Domain

B. Multiple Clock Domain

In the practical ASIC and SOC designs the

multiple clocks are used and the designs are called as

multiple clock domain designs. These kinds of designs

need to be described using the efficient design

architectures and Verilog RTL. This chapter focuses in

the key design techniques which are used to describe the

multiple clock domain designs while passing data from

one of the Clock Domain to other. The chapter key

highlights are the detail description for the

synchronizers, data path, and control path

synchronization logic using the efficient Verilog RTL.

This chapter also discusses on the key design challenges

in the multiple clock domain designs and even this

chapter focuses on the design guidelines to describe the

efficient clock domain designs.

 Fig 7: Multiple Clock Domain

2.3 Block Diagram

Fig 8: Block Diagram of Asynchronous FIFO

2.4 Flow Chart

Fig 9: Flow Chart

3. FIFO POINTERS AND MODULES DESIGN

3.1 FIFO Pointers

FIFOs are commonly used in electronic circuits for

buffering and flow control between hardware and

software. In its hardware form, a FIFO primarily consists

of a set of read and write pointers, storage and control

logic. There are two FIFO pointers were are,

 Synchronous FIFO Pointers

 Asynchronous FIFO Pointers

A. Synchronous FIFO Pointers

For synchronous FIFO design (a FIFO where writes to,

and reads from the FIFO buffer are conducted in the

same clock domain), one implementation counts the

number of writes to, and reads from the FIFO buffer to

increment (on FIFO write but no read), decrement (on

FIFO read but no write) or hold (no writes and reads, or

simultaneous write and read operation) the current fill

value of the FIFO buffer. The FIFO is full when the FIFO

counter reaches a predetermined full value and the FIFO

is empty when the FIFO counter is zero.

Unfortunately, for asynchronous FIFO design, the

increment-decrement FIFO fill counter cannot be used,

because two different and asynchronous clocks would be

required to control the counter. To determine full and

empty status for an asynchronous FIFO design, the write

and read pointers will have to be compared.

B. Asynchronous FIFO Pointers

In order to understand FIFO design, one needs to

understand how the FIFO pointers work. The write

178 International Journal for Modern Trends in Science and Technology

pointer always points to the next word to be written;

therefore, on reset, both pointers are set to zero, which

also happens to be the next FIFO word location to be

written. On a FIFO-write operation, the memory location

that is pointed to by the write pointer is written, and

then the write pointer is incremented to point to the next

location to be written. Similarly, the read pointer always

points to the current FIFO word to be read. Again on

reset, both pointers are reset to zero, the FIFO is empty

and the read pointer is pointing to invalid data (because

the FIFO is empty and the empty flag is asserted).

As soon as the first data word is written to the

FIFO, the write pointer increments, the empty flag is

cleared, and the read pointer that is still addressing the

contents of the first FIFO memory word, immediately

drives that first valid word onto the FIFO data output

port, to be read by the receiver logic. The fact that the

read pointer is always pointing to the next FIFO word to

be read means that the receiver logic does not have to

use two clock periods to read the data word. If the

receiver first had to increment the read pointer before

reading a FIFO data word, the receiver would clock once

to output the data word from the FIFO, and clock a

second time to capture the data word into the receiver.

That would be needlessly inefficient. The FIFO is

empty when the read and write pointers are both equal.

This condition happens when both pointers are reset to

zero during a reset operation, or when the read pointer

catches up to the write pointer, having read the last word

from the FIFO. A FIFO is full when the pointers are again

equal, that is, when the write pointer has wrapped

around and caught up to the read pointer.

The FIFO is either empty or full when the pointers are

equal, but One design technique used to distinguish

between full and empty is to add an extra bit to each

pointer. When the write pointer increments past the final

FIFO address, the write pointer will increment the

unused MSB while setting the rest of the bits back to

zero. If the MSBs of the two pointers are the same, it

means that both pointers have wrapped the same

number of times.

3.2. Asynchronous FIFO Pointers using Gray Code

Counter

One Gray code counter style uses a single set of

flip-flops as the Gray-code register with accompanying

Gray-to binary conversion, binary increment, and

binary-to-Gray- conversion. A second Gray code counter

style, the one described in this paper, uses two sets of

registers, one a binary counter and a second to capture a

binary to-Gray converted value.

The intent of this Gray code counter is to utilize the

binary carry structure, simplify the Gray-to-binary

conversion; reduce combinational logic, and increase the

upper frequency limit of the Gray code counter.

The binary counter conditionally increments the

binary value, which is passed to both the inputs of the

binary counter as the next-binary-count value, and is

also passed to the simple binary-to-Gray conversion

logic, consisting of one 2-input XOR gate per bit position.

Fig. 10, shows the block diagram for an n-bit Gray-Code

counter. This implementation requires twice the number

of flip-flops, but reduces the combinatorial logic and can

operate at a higher frequency.

In FPGA designs, availability of extra flip-flops is

rarely a problem since FPGAs typically contain far more

flip-flops than any design will ever use. In FPGA

designs, reducing the amount of combinational logic

frequently translates into significant improvements in

speed

Fig 10: Gray Code Counter

3.3 Asynchronous FIFO Design

To Design a Asynchronous FIFO there are some of the

modules which we are going to discuss,

 fifo1

 fifomem

 sync_r2w

 sync_w2r

 rptr_empty

 wptr_full

A. FIFO Top Level Model – fifo1

179 International Journal for Modern Trends in Science and Technology

The top -level FIFO module (fifo1) is a parameterized

FIFO design with all sub-blocks instantiated using the

recommended practice of doing named port

connections. Another common coding practice is to give

the top-level module instantiations the same name as the

module name. This is done to facilitate debug, since

referencing module names in a hierarchical path will be

straight forward if the instance names match the module

names. As shown in below Figure 11,

Fig 11: Schematic diagram of fifo1

B. FIFO Memory Buffer - fifomem

 The FIFO memory buffer (fifomem) is typically an

instantiated ASIC or FPGA dual-port, synchronous

memory device. The memory buffer could also be

synthesized to ASIC or FPGA registers using the RTL

code in this module.

About an instantiated vendor RAM versus a

Verilog-declared RAM, the Synopsys Design Ware team

did internal analysis and found that for sizes up to 256

bits, there is no lost area or performance using the

Verilog-declared RAM compared to an instantiated

vendor RAM.

 If a vendor RAM is instantiated, it is highly

recommended that the instantiation be done using

named port connections, As shown in below Figure 12,

 Fig 12: Schematic Diagram of fifomem

C. Read Domain To Write Domain Synchronizer –

Sync_r2w

This is a simple synchronizer module (sync_w2r),

used to pass an n-bit pointer from the write clock

domain to the read clock domain, through a pair of

registers that are clocked by the FIFO read clock. Notice

the simplicity of the always block that concatenates the

two registers together for reset and shifting. All module

outputs are registered for simplified synthesis using

time budgeting. All outputs of this module are entirely

synchronous to the rclk and all asynchronous inputs to

this module are from the wclk domain with all signals

named using an “w” prefix, making it easy to set a false

path on all “w*” signals for simplified static timing

analysis. As shown in below Figure 13,

Fig 13: Schemati Diagram of Sync_r2w

D. Write Domain to Read Domain Synchronizer –

Sync_w2r

This is a simple synchronizer module

(sync_w2r), used to pass an n-bit pointer from the write

clock domain to the read clock domain, through a pair of

registers that are clocked by the FIFO read clock. Notice

the simplicity of the always block that concatenates the

two registers together for reset and shifting. All module

outputs are registered for simplified synthesis using

time budgeting. All outputs of this module are entirely

synchronous to the rclk and all asynchronous inputs to

this module are from the wclk domain with all signals

named using an “w” prefix, making it easy to set a false

path on all “w*” signals for simplified static timing

analysis. As shown in below Figure 14,

180 International Journal for Modern Trends in Science and Technology

Fig 14: Schematic Diagram of sync_w2r

E. Read Pointer And Empty Generator Logic –

rptr_empty

This module encloses all of the FIFO logic that is

generated within the read clock domain (except

synchronizers). The read pointer is a dual n-bit Gray

code counter. The n-bit pointer (rptr) is passed to the

write clock domain through the sync_r2w module. The

(n-1)-bit pointer (raddr) is used to address the FIFO

buffer.

The FIFO empty output is registered and is asserted

on the next rising rclk edge when the next rptr value

equals the synchronized wptr value. All module outputs

are registered for simplified synthesis using time

budgeting. This module is entirely synchronous to the

rclk for simplified static timing analysis. As shown in

below Figure 15,

Fig 15: Schematic Diagram of rptr_empty

F. Writer Pointer and Full Genration Logic – wptr_full

This module encloses all of the FIFO logic that is

generated within the write clock domain (except

synchronizers). The write pointer is a dual n-bit Gray

code counter. The n-bit pointer (wptr) [2]is passed to

the read clock domain through the sync_w2r module.

The (n-1)-bit pointer (waddr) is used to address

the FIFO buffer. The FIFO full output is registered and is

asserted on the next rising wclk edge when the next

modified wgnext value equals the synchronized and

modified wrptr2 value (except MSBs). All module

outputs are registered for simplified synthesis using

time budgeting.

This module is entirely synchronous to the wclk

for simplified static timing analysis. As shown in below

Figure 16,

Fig 16: Schematic Diagram of wptr_full

3.4 EDA Playground

EDA Playground gives engineers immediate

hands-on exposure to simulating and synthesizing

SystemVerilog, Verilog, VHDL, C++/SystemC, and other

HDLs as shown in Fig 17. All you need is a web browser.

 Fig 17: EDA Playground

 With a simple click, run your code and see console

output in real time.

 View waves for your simulation using EP Wave

browser-based wave viewer.

 Save your code snippets (“Playgrounds”).

 Share your code and simulation results with a web

link. Perfect for web forum discussions or emails.

181 International Journal for Modern Trends in Science and Technology

Great for asking questions or sharing your

knowledge.

 Quickly try something out – Try out a language

feature with a small example. – Try out a library that

you’re thinking of using.

 For Quick prototyping – try out syntax or a

library/language feature.

 When asking questions on Stack Overflow or other

online forums, attach a link to the code and

simulation results.

 During technical interviews to test candidates’

System Verilog/Verilog coding and debug skills.

Trying out different verification frameworks: UVM, SV

Unit, Plain Verilog, or Python.

A. Aldec Riveria Pro 2022

Riviera-PRO™ addresses verification needs of

engineers crafting tomorrow’s cutting-edge FPGA and

SoC devices. As shown in Fig.18 Riviera-PRO enables the

ultimate testbench productivity, reusability, and

automation by combining the high-performance

simulation engine, advanced debugging capabilities at

different levels of abstraction, and support for the latest

Language and Verification Library Standards.

 Extensive simulation optimization algorithms to

achieve the highest performance in VHDL,

Verilog/SystemVerilog, SystemC, and

mixed-language simulations.

The industry-leading capacity and simulation

performance enable high regression throughput for

developing the most complex systems.

 Fig 18: Simulating By using Tools

4. VERIFICATION

The verification of the Asynchronous FIFO

design is carried out to check that if the design is

working as per the specification. The following modules

are generated to check the functionality of the

asynchronous FIFO design as shown in below Figure 1,

Fig 19: Verification of Testbench

A. Interface

The interface consists of bundle of wires i.e.

multiple signals used to connect the Testbench to the

DUT. The mod ports used in the interface block are

used to group the signals for an individual block and to

specify the directions of the signals.

The interface block used in the verification of

asynchronous FIFO consists of two interfaces one

synchronized to the write clock domain and other

synchronized to the read clock domain.

B. Testcase

The Testcase module will instantiate the

environment module and calls the methods in the

environment

C. Transaction

 This block randomizes the data values “wdata” to be

given to the DUT and also assigns values to all the

control bits that controls the read and write operation

D. Generator

 The generator block creates a mailbox mbx. The mbx

mailbox is used to send the generated transaction to the

driver block. The generator put the transaction tr into

the mailbox mbx which is later retrieved by the driver

block.

E. Driver

 The driver block receives the transactions from the

mailbox mbx and assigns the values in the transaction to

the individual signals of the DUT through virtual

182 International Journal for Modern Trends in Science and Technology

interfaces. The driver also sends the transaction to

scoreboard using drv2sb mailbox.

F. Monitor

This is the receiver section that receives the data

from the receiver side of the Asynchronous FIFO. This

Monitor, it gets recorded by themselves the transaction

and we can able to see the purpose of the Transaction of

the Asynchronous FIFO and The transaction is also sent

to the scoreboard using mon2sb mailbox.

G. Scoreboard

 The scoreboard receives the transactions from the

driver through mailbox “drv2sb” and another

transaction from the mailbox “mon2sb”. The two

transactions are compared with each other.

Since in case of Asynchronous FIFO the data

sent by the write clock domain system to the DUT

should be same as that of the data received by the read

clock domain system of the DUT. Therefore, if the two

transactions received by the scoreboard are the same,

then the DUT is working correctly.

H. Environment

The environment blocks instantiates all the modules

and mailboxes. It consists of the following modules:

 BUILD: It instantiates the mailboxes and other

testbench modules i.e. driver, monitor, scoreboard.

 RESET: It is used to initialize all the signals at the

time of initialization and set them to their initial

values.

 START: This method is used to run all the task and

functions in all the modules.

 WAIT FOR END: This method is used to wait for the

completion of the last transaction.

 RUN: This task run all the methods in the

environment module in the specified order.

 REPORT: Its main function is to detect the errors in

the design and report the errors.

5. RESULT

The Simulation results are Monitored from the EDA

Playground’s EP Waveform. As we can see that all the

FIFO designs succesfully designed the output waveform.

At last, after the simulating we are going to note down

the waveforms are shown in below Fig 19. It Describes as

the log data, where it gets self estimated output in binary

or hexadecimal of rdata and wdata.With the help of the

binary numbers the verfication of this Asynchronous

FIFO is going to be done and are going to verify the data

with the two necessary actions of Gray Code Counter as ,

 Data Send to Write Clock Domain(Fig 20) and

 Data Recived at Read Clock Domain.(Fig 21)

Fig 20: Log Data After Simulating

 Fig 21: Data Sent to Write Clock Domain

Fig 22: Data Received at Read Clock

6. CONCLUSION

Since the data sent by the write clock domain to the

Asynchronous FIFO is same as the data received at the

read clock domain from the asynchronous FIFO.

Therefore, the Asynchronous FIFO is functionally

correct.

183 International Journal for Modern Trends in Science and Technology

As shown in Fig 20, during “Transaction 1” when the

wdata is sent by the write clock domain, the 8-bit wdata

is stored at the memory location pointed to by the

waddr. The wptr and rq2_wptr gets incremented to

point to the next empty memory location in the FIFO.

During next transaction, As shown in Fig 21

“Transaction 2”, the next word wdata is stored at the

next memory location pointed to by the waddr and the

pointers wptr and rq2_wptr gets incremented.

So, In this way data from the write clock domain are

stored at the consecutive memory location present in the

Asynchronous FIFO until the memory becomes full. In

case the memory is full the full flag is generated to

prevent the overflow condition.

As shown in Fig 21, the data stored at the memory

location in asynchronous FIFO is read by the read clock

domain through 8-bit rdata bus. Since the design has the

fifo implementation. Therefore, the data is read in the

same way as it is written.

Hence, the rdata at the first memory location pointed

by the raddr is read first provided the memory is

not empty. Otherwise, empty flag will be high. When the

first data word is read by the read clock domain, the

pointers rptr and wq2_rptr gets incremented to point to

the next memory in the Asynchronous FIFO to be read.

So, on completing the read operation of “Transaction 1”,

the “Transaction 2” is read by the read clock domain in

the same way.

Therefore, the read operation is performed on the

consecutive memory locations of the Asynchronous

FIFO by the read clock domain until the Asynchronous

FIFO becomes empty. This Asynchronous FIFO design

can be used in the future to overcome the timing issues

which occurs in the Multi Clock domain systems.

Conflict of interest statement

Authors declare that they do not have any conflict of

interest.

REFERENCES

[1] Mohit Arora, “The Art of Hardware Architecture: Design

Methods and Techniques for Digital Circuits,” Springer,

2011, ch 3, sec 3.3, pp 54-55

[2] Clifford E. Cummings, “Simulation and Synthesis

Techniques for Asynchronous FIFO Design,” SNUG 2000

Users Group Conference, San Jose, CA, 2002) User Papers,

March 2002.

[3] Clifford E. Cummings, “Synthesis and Scripting Techniques

for Designing Multi-Asynchronous Clock Designs,” SNUG

2001 (Synopsys Users Group Conference, San Jose, CA,

2001) User Papers, March 2001

[4] Clifford E. Cummings and Don Mills, “Synchronous Resets?

Asynchronous Resets? I am So Confused! How Will I Ever

Know Which to Use?” SNUG 2002 (Synopsys Users Group

Conference, San Jose, CA, 2002) User Papers, March 2002.

[5] Dadhania Prashant C. “Designing Asynchronous FIFO,”

Journal Of Information, Knowledge and Reseaarch In

Electronics and communication Engineering, Vol.2, Issue.2,

November 2013

[6] Chris Spears, “System Verilog for Design, “A Guide to Using

System Verilog for Hardware Design and Modeling,”

Springer Second edition.

[7] Mu-Tien Chang, Po-Tsang Huang, and Wei Hwang,”A

Robust Ultra-Low Power Asynchronous FIFO Memory with

Self-Adaptive Power Control,” SOC Conference, 2008 IEEE

International, pp.175-178, Sept., 2008

