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Over a million stars were observed over the past ten years in an effort to findtransiting planets. Manual interpretation of 

prospective exoplanet candidatesrequires a lot of work and is prone to human mistake, with difficult to measureoutcomes. 

Thanks to extensive ground- and space-based searches, the number of newly discovered planets and planetary systems has 

increased from a single planetto hundreds. The discovery of individual planets is no longer the main focus ofscience; instead, it is 

characterizing planets, which entails searching for thepresence of various chemical elements in the tantalizing hope of finding 

planetswith habitable environments and locating biological life. The perfectplanet-detection algorithm should be quick, 

noise-resistant, and capable of learningand abstracting extremely nonlinear systems. The best platform is a neural 

networktrained with simulated data to identify planets. A computational method calleddeep learning with a neural network 

attempt to simulate the biological processthrough which a brain solves issues by connecting groups of neural units. 

Mostinformation about the planet is unlabeled, including information obtained viatransit spectroscopy. Automating the 

categorization of habitability can help with this problem's solution. SMOTE, or Synthetic Minority Oversampling 

Technique,was the approach that best addressed the problem of class imbalance. This methodproduced good results when 

compared to Random Oversampling and RandomUndersampling. Clustering and Anomaly Detection can be useful 

preparatoryprocedures for a complete inversion analysis utilizing the k-means clusteringapproach because none of them need 

understanding of the fundamental physics andchemistry of the observed atmospheres. This review paper assesses three 

machineslearning methods namely, Convolutional Neural Network, K-means clustering andSaha Bora activation function for the 

detection of exoplanets. 

 

KEYWORDS:Artificial Intelligence, Deep Learning, K-means clustering, Saha-Bora Activation Function, Clustering.  

1. INTRODUCTION 

The discovery of planets outside of our solar system 

has advanced from a single planet to hundreds of newly 

discovered planets and planetary systems thanks to 

extensive ground- and space-based searches. Today, the 

focus of scientific inquiry has shifted from the discovery 

of individual planets to the characterisation of planets, 

which involves looking for the existence of various 

chemical components in the tantalizing hope of 

discovering planets with livable settings and identifying 

signs of biological life. When data is convolved using the 

best filter, the SNR of a transit detection may be 

maximized. Kernels are manually created to roughly 

represent what a human user would consider to be the 

best filter because it is not possible to analytically solve 
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for the ideal filter in the situation of variable transit 

shapes.  

Convolutional neural networks (CNN) have been 

utilized in the past to overcome comparable kernel 

optimization issues using deep learning. The thresholds 

that now constrain photometric surveys will be raised by 

future planet-hunting surveys like TESS, PLATO, and 

LSST by sampling brighter stars at quicker cadences and 

over bigger fields of views. Most methods to detect 

planets use a least squares optimization, grid-search, or 

matching filter strategy to increase the correlation 

between data and a straightforward transit model.  

Using least-squares optimisation, the mean-squared 

error (MSE) between data and a model is sought to be as 

small as possible. Practical applications rely on a variety 

of numerical inversion approaches, which lately have 

been using more and more cutting-edge statistical and 

machine-learning (ML) techniques to increase the 

precision, accuracy, and speed of the executed retrievals. 

The last point is more important in light of the enormous 

number of exoplanet transits that are anticipated during 

the future years. The perfect planet-detection algorithm 

should be quick, noise-resistant, and capable of learning 

and abstracting extremely non-linear systems.  

The best platform is a neural network trained with 

simulated data to identify planets. A neural network 

used in deep learning is a computer method for 

simulating the biological process through which a brain 

solves issues by connecting groups of neural units. 

Layers of "neurons" make up deep nets, and each layer is 

assigned a distinct weight to represent the relative 

weights of the various input parameters. 

2. CONVOLUTIONAL NEURAL NETWORK 

Decision Trees, Support Vector Machines, Logistic 

Regression, Random Forest Classifier and the 

Convolutional Neural Network are the The baseline 

algorithms for building upon the ensemble-CNN 

algorithm. Decision trees are graphs that resemble trees 

and include nodes that represent the points where one 

picks an attribute and poses a question. While leaves 

indicate the actual output or class label, edges are 

understood to represent the responses to the inquiry. 

With straightforward linear decision surfaces, decision 

trees are used in nonlinear decision-making. Creating 

training models that might be helpful in predicting the 

class or value of the target variable is essentially what 

decision trees are concerned with. Simple decision rules 

that have been learned from training data are the basis of 

this supervised learning system. It is taken into account 

starting at the tree's base when predicting a class label 

for a record. The root attribute and the record attribute 

values are contrasted. The branch corresponding to the 

value is followed, and the next node is taken into 

consideration, based on the comparison. The root node 

of the decision tree is divided into decision nodes. A 

decision node might further divide into terminal nodes 

(leaf nodes) or other decision nodes. You may consider 

each node in the tree as a test case for one or more 

attributes. Similar to this, each edge that descends from 

the node may be viewed as a potential solution to the test 

case. Every subtree anchored at the new node goes 

through this recursive procedure once again. Support 

vector machines are supervised learning-based machine 

learning techniques. They offer a practical method for 

classifying and doing regression analysis on data. SVM 

was created in the 1990s with the intention of offering 

non-linear approaches to data analysis. One of the most 

used machine learning algorithms is SVM. This is so that 

SVM can perform better than other model strategies 

even with a small number of features. When compared 

to the model's error, the SVM model is rather resilient. 

Additionally, SVM takes less time to compute than other 

models like neural networks. Finally, SVM is more 

efficient than the majority of models. The Input Layer, 

the Hidden Layer, and the Output Layer are the three 

layers that make up the SVM architecture.  

Layer 1, also known as the input layer, contains 

training examples that are coupled to the hidden layer 

for processing the learning prediction. The output layer 

is also linked to this layer. Given that the dependent 

variable is dichotomous, the machine learning method 

known as logistic regression is employed to do 

regression analysis. It is a type of predictive analysis 

that's used to characterize data and ascertain how 

dependent binary variables relate to independent 

variables. As a result, it may be stated that the dependent 

variable is a binary variable, denoted by the data 1 (for 

yes, happy, success, etc.) or 0 (for no, sad, failure, etc.). 

P(Y = 1) is predicted by the logistic regression model as a 

function of X. Since probabilities may be predicted 

directly, logistic regression has an advantage over linear 

regression. Additionally, it keeps the training data's 
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marginal probabilities. With logistic regression, there are 

several presumptions. Variables that need huge sample 

numbers or don't have any significance are not taken 

into account. It is mostly used to forecast binary output. 

The Random Forest classifier is essentially an algorithm 

for learning from ensembles of trees. As a result, it is 

made up of several separate decision trees that work 

together as an ensemble. In order to identify the final 

class of the test item, the classifier aggregates the votes 

from several decision trees from a portion of the training 

set that was randomly chosen. Every tree has a class 

prediction, therefore the prediction made by the model 

belongs to the class that receives the most votes. This 

also shows that if a large number of reasonably 

uncorrelated models work together as a committee, they 

will perform better than their individual component 

models. A single perceptron is multiplied by a weight 

and added to in the Perceptron Algorithm. However, 

there are several linear layers in Multilayer Perceptron 

(MLP). An input layer, a hidden layer, and an output 

layer are all components of a three-layer network. The 

input layer receives data, while the output layer 

produces results. Depending on the issue, the number of 

concealed layers can be changed. Every perceptron in 

MLP is connected to every other perceptron, which is 

referred to as being completely connected. Fully linked 

MLP has an excessive number of parameters, which 

might make weights difficult to control. Overfitting, 

inefficiency, and redundancy may come from this.  

Convolutional Neural Networks (CNN) can handle 

more parameters and are more reliable than MLP. 

Convolution operations are carried out by filters in a 

convolutional neural network, which is a type of deep 

neural network. The foundational component of a CNN 

is the convolutional layer. The parameters of the layer 

are made up of several learnable filters that combine a 

modest responsive field while extending over the whole 

depth of the input volume. The forward pass processes 

the dot product between the filter entries and the input 

to create a 2-dimensional activation map by convolving 

each filter over the width and height of the input 

volume. As a result, the network develops filters that 

activate when it detects a specific type of feature at a 

specific geographical location in the data. The 

information and its result are convolved to the next layer 

via convolutional layers. This closely resembles how a 

cell in the visual brain might respond to a specific 

stimulus. Information specific to each convolutional 

neural procedure's receptive field. A CNN is made up of 

many kinds of layers. In order to predict the class 

probabilities for each feature, the convolutional layer 

builds a feature map. Applying a filter that scans the 

entire image does this. The amount of data that the 

convolutional layer generated for each feature is scaled 

down and the most important information is maintained 

by a pooling layer. The completely linked input layer is 

responsible for transforming the outputs from previous 

layers into a single vector that can be used as input for 

the layer after it. The feature analysis-generated input is 

subjected to weighting by the fully linked layer. This 

function's goal is to correctly forecast the label. The final 

probabilities for selecting an image class are produced 

by a fully linked output layer. A method of integrating 

various machine learning models called stacking. The 

term "meta learner" is first used in stacking as an 

alternative to the term "voting," which is frequently used 

in bagging. The primary function of stacking is to 

recognise or categorize the trustworthy model and meta 

learner, and it aids in the search for a technique for 

fusing the output of the best base-learner. The 

predictions of the metamodel input and base model, 

respectively, are Level-1 models and Level-0 models. In 

essence, stacked learners are employed for classification, 

where each occurrence inputs a class value prediction 

into a Level-0 model. These forecasts add to level 1 and 

come together to form the final forecast. Although it 

seems challenging, training the stacking model is not as 

complex as it seems. The stacking model's training 

procedures are quite similar to those of k-fold validation. 

The dataset is divided into two sets for this ensemble 

technique: the Train set and the Test set. But throughout 

the training phase, the test set is not used. The training 

set has k-number of folds added to it. If the input dataset 

has N data points, then these folds contain N/k number 

of points. It predicts the value of fold using the M 

number of models, and the M-Number of predictions is 

derived from the N/k data points. These forecasts may be 

sent into the meta learner, and the metal learner can 

forecast the outcomes. 

3. K-MEANS CLUSTERING 

Both the forward problem and the inverse problem fall 

under the umbrella of supervised learning (multivariate 
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regression) in machine learning, where one attempts to 

predict a collection of objectives (outputs) given a set of 

characteristics (inputs). The selection of the variables to 

be considered as features and goals accounts for the 

majority of the differences between and. Any such 

supervised learning assignment must have access to 

high-quality labeled training data in order to be 

successful, which in turn necessitates an accurate 

simulation of the intricate radiative transfer process. In 

other words, the forward model's quality and accuracy 

will determine how well the inversion performs, and as a 

result, the inversion outcomes are model-dependent. In 

contrast to the majority of the transit spectroscopy 

literature that makes use of machine learning techniques, 

which focuses on supervised learning, in this paper one 

can approach the inversion problem from the point of 

view of unsupervised learning, i.e The focus will remain 

exclusively on the set of measured 

wavelength-dependent modulations, without any 

reference to the corresponding atmospheric parameters. 

In other words, the paper's whole numerical work will 

be carried out in an entirely unsupervised manner. 

Although it is not necessary to have prior knowledge of 

the labels (the atmospheric parameters), doing so may 

make it simpler to see and comprehend the results and to 

relate them to the underlying physics and chemistry.  

Unsupervised machine learning techniques make an 

effort to delve deeper into the underlying structure of 

the data set, revealing hidden patterns, correlations, and 

linkages. This approach offers a more exploratory, 

open-minded view of the data in anticipation of (and as a 

prelude to) any supervised learning tasks that may come 

next. Data wrangling, preprocessing, initial exploratory 

data analysis based on summary statistics, factorization 

techniques like principal component analysis, 

dimensionality reduction, and manifold learning, and 

grouping techniques, which try to identify similar 

groups or anomalies, are the only unsupervised learning 

tasks that are most pertinent for planetary spectroscopy 

that will be covered in this paper. Another common 

unsupervised job is clustering. By using the K-means 

clustering technique to divide a library of synthetic 

spectra into distinct groups, researchers have employed 

clustering in the context of planetary transmission 

spectroscopy to derive informed priors for the radiative 

transfer retrieval model. The primary goal was to 

increase retrieval speed by refining the first parameter 

estimation. The number of classes to be employed in the 

technique is chosen based on this rationale.  

While in principle, the more classes, the better, the best 

number of classes relies on the data's degree of noise, 

which may result inmisclassification, in practise, the best 

number of classes is dependent on the noise level. The 

examination of the data identified a number of unique 

groupings (branches) that correspond to various 

classifications of atmospheres. In order to locate the 

individual branches, which are the important regions in 

terms of physics and chemistry, rather than to discover 

excellent beginning hypotheses, this means that our 

purpose is using the clustering approach. From our 

perspective, the number of classes is determined by the 

number of intriguing physics and/or chemistry regimes, 

which in our instance is correlated with the number of 

gas components present in the atmosphere, rather than 

the resolution or noise level.  

The scikit-learn K-means clustering tool may be used 

to examine the benchmark data set. The clustering is 

carried out in the entire 13-dimensional PCA space 

following the standardization of the PCA component 

parts. Without any prior information of the temperature 

and makeup of the atmosphere, the classification was 

performed using the K-means method, which accurately 

distinguishes between the branches for clouds, water, 

HCN, and ammonia. Future studies in this area have a 

potential path forward because of the effectiveness of the 

unsupervised clustering method.  

There are several clustering algorithms that can 

determine the ideal number of clusters on their own, 

unlike the K-means method, which needs the number of 

clusters to be predetermined. As an alternative, one 

might examine the ideal number of clusters within 

K-means itself, using a method like silhouette analysis, 

for example. The key takeaway from this experiment is 

that the spectrum data clustering contains significant 

information regarding the presence or absence of certain 

atmospheric elements. One of these physics-driven 

clusters may be promptly linked to a newly detected 

spectrum, allowing the planet to be quickly categorized 

based on the makeup of its atmosphere. 

 

4. SAHA-BORA ACITVATION FUNCTION 

Artificial neural networks, or neural networks, are a set 

of linked units arranged in layers that process 

information signals by dynamically reacting to inputs. 
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The network's layers are arranged so that inputs go to 

the input layer and output comes from neurons in one or 

more hidden layers after processing. Computing 

neurons make up the hidden layers, which are linked to 

the input and output layers via a network of weighted 

connections. With each input provided to the network, 

weights are changed so that the error between the 

desired and observed output is kept to a low. This is how 

the network learns from input patterns. Hidden layers 

have a unique capability called activation function that 

allows neurons to process signals and spread them 

across the network. The computation of the discrepancy 

between the observed and intended output is the 

responsibility of a particular kind of ANN termed back 

propagation, which then feeds this discrepancy back to 

the network with each cycle or 'epoch'. The weights are 

adjusted appropriately, and the network is trained or 

learned until the error is minimized. A functional 

mapping between inputs and outputs is provided by the 

activation function. The network can learn from and 

model complex datasets including audio, video, and text 

because of this. The Sigmoid, hyperbolic tangent, and 

Relu activation functions are the most common. 

Significant accomplishments are suggested by the 

analysis on quasar-star classification using machine 

learning and the design of unique activation function for 

exoplanet classification. They suggest an activation 

function that needs less effort to tune the 

hyperparameters than the conventional activation 

function. It has also been demonstrated to be a successful 

answer to the first-order differential equation. In an 

effort to get successful results, several have 

experimented using ANN in habitability categorization 

challenges. The categorization of exoplanets has since 

been developed using a unique elastic KNN model. The 

authors claim that this model can handle a wide range of 

input parameters while maintaining global optimum. 

The new activation function features an optima and will 

be utilized to train a neural network for habitability 

categorization. Evidently, compared to the more popular 

sigmoid function, there is less flattening of the function 

in the graphic simulations shown below. As a result, the 

formulation should make it easier to deal with local 

oscillations. A first order polynomial can be used to 

approximate the variable term in the SBAF denominator. 

This could enable us to avoid pricey floating-point 

calculations without sacrificing precision. The maxima's 

exclusivity within the specified timeframe must be 

demonstrated. This will get around the local maximum 

issue. 

 

5.  ANALYSIS 

For the convolutional neural network, automating the 

categorization of habitability, machine learning can help 

with the issue of habitability disposition. Synthetic 

Minority Oversampling Technique (SMOTE) was the 

method that dealt with the issue of class imbalance the 

best. In comparison to Random Oversampling and 

Random Undersampling, this approach yielded good 

results. After boosting the minority class data by 

synthetically creating new examples, the machine 

learning model was able to train and generalize 

successfully. Support Vector Classifier was also used to 

achieve cost-sensitive learning, but the outcomes were 

the same as those attained by employing SMOTE. The 

limitation of the study is that it is not easy to detect 

reflected light from a planet’s atmosphere. For the 

k-means clustering method, Exhaustive tasks like 

scanning transiting light curves for planetary signals are 

jobs that ML techniques are capable of handling. One of 

the most challenging characteristics that prevent ML 

methods from performing to their full potential is noise 

in the light curve signals. By producing false positives or 

even obscuring the transit signals from the detection 

models, noisy features might trick AI algorithms. 

Human interaction is still necessary (for example, in 

feature extraction) even if the current ML algorithms 

lighten the workload for scientists working to validate 

exoplanet discoveries. Additionally, weak transit signals 

offer a fantastic chance to discover exoplanets that 

resemble Earth. The optimal machine learning model 

should be able to analyze weak signals. To solve the 

issue posed by transits seen in low SNR light curves, this 

calls for a better grade of detection and identification 

capability. For these reasons, MRA appears to be a viable 

method for finding tiny planets and validating the 

signals that are found. MRA may reduce the amount of 

the data while simultaneously collecting fine details 

from the light curves. This enhances the ML models' 

identification performance and considerably reduces the 

execution time. 
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6. CONCLUSION 

With a 99.62% accuracy rate, the Ensemble-CNN 

approach exceeds the Transit approach, Radial Velocity, 

Direct Imaging, and Gravitational Microlensing. Because 

none of them necessitate knowledge of the underlying 

physics and chemistry of the observed atmospheres, 

Clustering and Anomaly Detection can serve as helpful 

preprocessing steps for a thorough inversion analysis 

using the k-means clustering method. Strong correlation 

between the spectral data has been demonstrated, calling 

for the usage of low-dimensional representations. 

Therefore, dimensionality reduction techniques have 

been applied. Intriguing data structures have also been 

discovered via research that have distinct branch 

topologies and correlate to varied chemical regimes. The 

technique of classifying habitat appropriateness is 

challenging. Despite the abundance of sophisticated 

methods that mix supervised and unsupervised learning 

techniques in the literature, differentiating between the 

classes of psychroplanet and mesoplanet is incredibly 

difficult because of the fragile border between them. In a 

2018 research, the performance of the Cobb-Douglas 

Habitability Score (CDHS) was compared to that of other 

machine learning algorithms, and its elasticity was 

studied. Given our limited knowledge of exoplanets and 

their habitability, these results and methodologies offer a 

key first step towards future ground- and space-based 

observatories automatically recognising objects of 

interest from huge databases. A framework for forward 

and backward pass training may be useful. The variable 

term in the SBAF is based on earlier modeling of topics 

like production functions and the usage of optimization 

theory in production economics. The development of 

classification algorithms may frequently be required to 

address data complexity or bias in order to improve the 

initial method, lessen class imbalance, or alter confidence 

intervals. This is the primary argument in favor of 

creating a special activation function for neural 

networks. 

 

7. FUTURE DIRECTIONS 

For the K-means clustering method, Future research 

should focus on assessing the performance of additional 

MRA methods, such as Ensemble Empirical Mode 

Decomposition, Stationary Wavelet Transform, 

Empirical Mode Decomposition (EMD), and employing 

the reconstructed signal in the exoplanet identification 

stage. Exoplanet transits differ in form due to factors like 

star activity, for example. Therefore, a straightforward 

template is insufficient to capture the finer details, 

especially when the signal is weaker than the noise or 

when there are significant systematics. To learn the 

photometric characteristics of a transiting exoplanet, we 

employ an artificial neural network. Millions of light 

curves may be processed in a couple of seconds using 

deep machine learning. In order to improve the detection 

resilience to noise, future research needs to use deep 

learning techniques like short term memory and PReLU. 

The network design needs to be optimized in order to be 

made to respond to particular challenges, which requires 

more study. By eliminating systematics from the time 

series, a pre-processing step might considerably enhance 

the performance of transit identification. 
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