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 One of the challenges for game-theoretic/ML algorithms is that they usually rely on massive amounts of data to match the 

model parameters. In sectors like cybersecurity, it often involves human involvement and the gathering of a sizable quantity of 

data on human decision-making to properly grasp how various defense algorithms could function in actual conditions. 

Unfortunately, these approaches are rather challenging. Cognitive models are typically starting to play a direct part in 

applications where predictive models of human decision-making take the function of humans in the activity. Due to a lack of such 

decision data, it is challenging to comprehend the attacker's decision-making in the cybersecurity field. Defense algorithms 

frequently work under the presumption that attackers make logical choices and follow the optimal line of action. Researchers 

found that for the Markov Security Games, the calibrated IBL model performed better than the ACT-R model in accounting for 

human assessments under both patching scenarios. One potential cause is that the model appears to be unable to gather human 

data when using the default ACT-R parameters. Recalibrating these variables, however, greatly improved the model's own 

performance. Studies show that hackers' decisions were influenced by their perception of vulnerability, and there are several ways 

to shape this perception. To trick computer networks, for instance, one may utilize honeypots, which are simple to attack 

systems. Utilizing intrusion-detection systems (IDSs) and alerting hackers to their presence and accuracy is the second strategy. 

This review paper addresses the role of cognitive models in three domains namely Instance based models for masking, ACT-R 

model for Markov Based Games and Cybonto for increasing threat protection levels in cyber security. 

 

KEYWORDS:Machine Learning, Cognitive Models, ACT-R, Intrusion Detection Systems,Markove Based Games, Cyber-Security, 

Algorithms. 

1. INTRODUCTION 

The practice of protecting networks, computers, 

servers, mobile devices, electronic systems, and data 

from hostile assaults is known as cyber security. The 

expression is used in a broad variety of contexts, 

including business and mobile computing, and may be 

divided into a few main categories. As the global cyber 

threat evolves swiftly, there are more data breaches 

every year. When compared to the same period in 2018, 

this amount is more than twice (112%) the number of 

data disclosed. Because they gather financial and 

medical data, some of these industries are more 

interesting to cybercriminals than others, but any firms 

that utilize networks might be the target of customer 
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data theft, corporate espionage, or consumer assaults. As 

the severity of the cyber threat is anticipated to keep 

increasing, there is an inevitable increase in global 

spending on cybersecurity solutions. According to 

Gartner, worldwide investment on cybersecurity will 

top $260 billion by 2026 and reach $188.3 billion in 2023. 

In response to the growing cyber danger, governments 

all over the world have issued recommendations to 

support businesses in putting good cyber-security 

practices into place. A framework for cyber security has 

been created by the National Institute of Standards and 

Technology (NIST) in the United States. According to the 

design, all electronic resources should be continuously 

monitored in real-time to stop the propagation of 

malicious code and aid in its early detection. Network 

security is the process of defending a computer network 

against intruders, such as malicious software that 

exploits weaknesses or deliberate assaults. The goal of 

application security is to protect software and hardware 

from damage. If an application is compromised, the data 

that it is designed to protect may become accessible. 

Effective security starts at the design phase, long before a 

software or gadget is put to use. Information security is 

used to protect data integrity and privacy during storage 

and transfer. The methods and decisions used to manage 

and protect digital assets fall under the category of 

operational security. This comprises the rules governing 

where and how data may be stored and shared, as well 

as the privileges users have when using a network. 

Defense-related game theory/ML algorithms are 

frequently data-driven and frequently do not take into 

account insights about human behavior. In these 

circumstances, cognitive models might be applied in a 

variety of ways, such as offering an interpretation of 

human behavior or serving as a data source for ML 

algorithms by making precise predictions about human 

data 

2. INSTANCE BASED LEARNING (IBL) 

Interest in creating efficient cyberdefense methods 

utilizing game theory and machine learning (ML) 

techniques has grown as cybercrime has become more 

prevalent. Deception (i.e., intentional acts made to 

induce attackers to perform, or not take, specific actions 

Cohen, 1998) is one method of cyberdefense. Masking is 

a cyber deception tactic used to mask network 

characteristics and hide information that an attacker may 

seize during the reconnaissance phase. The majority of 

masking strategy research to now has either been 

theoretical or has only been tested in simulations. 

Therefore, it is uncertain if such defense techniques 

would work in real-world situations against human 

attackers. In a recent investigation, we actually 

discovered that a masking technique that in principle 

seemed to work well against human assailants was no 

more effective than a random camouflage technique. The 

assumption that these algorithms make regarding the 

"rationality" of human attackers may be one explanation 

for the present outcomes of masking tactics. Humans can 

only be boundedly reasonable since they generally have 

several cognitive limitations. Humans have limited 

memory capacity and absorb information sequentially, 

which frequently leads to biases in judgment. Attackers 

may be susceptible to these biases and err in ways that 

affect cybersecurity. As an example, they utilized 

opposing human variables to take advantage of 

prejudices and shortcomings connected to poor attention 

to stop cyberattacks. biases of many types, including the 

illusion of control, the sunk cost fallacy, illogical 

escalation, and attentional tunneling, have been 

identified. Similar decision-making biases including 

anchoring bias, confirmation bias, and take-the-best 

heuristic bias have been seen among cybersecurity 

specialists. Unfortunately, existing defense algorithms 

don't take into account the biases produced by human 

memory and instead disregard them. Cyberdefense 

algorithms also don't take into account defender biases, 

which might hinder their ability to protect themselves. 

The impact of gain and loss framing biases on defenders' 

actions was shown in a network defense scenario. 

Defenders who started out using gain framing—that is, 

with a network already in quarantine—used a 

quarantine approach more akin to those who started out 

using loss framing. How to lessen these biases in 

defenders has not received much attention up to this 

point. On the attacker's side, it has been shown how 

defense algorithms can exploit biases (such as 

confirmation bias) in human attackers by using cognitive 

models that computationally mimic the attacker's 

decision-making process. With the aid of a 

straightforward job, it has been demonstrated that it is 

feasible to inform the defense algorithms on the 

attacker's behavior and enhance the game theory/ML 

algorithms by making them more responsive to the 
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specific attacker's activities. Researchers have proposed a 

framework for the creation and use of game-theory 

defense algorithms on experimental testbeds. The 

effectiveness (i.e., utility of the defender) of defense 

algorithms is assessed using an experimental testbed 

with human participants (e.g., attackers). Importantly, 

game-theoretic algorithms for adaptive defense are 

informed by cognitive models that simulate human 

decision-making. This broad concept of adaptive 

cyberdefense is built on cognitive models to show how 

personalized and adaptive signals are generated in a 

straightforward insider assault scenario. The fact that 

game-theoretic/ML algorithms frequently rely on vast 

volumes of data to match the model parameters presents 

one of their obstacles. It typically takes human 

interaction and the collection of a significant amount of 

human decision-making data in fields like cybersecurity 

to fully understand how various defense algorithms 

might operate in real-world circumstances. These 

interventions are unfortunately quite difficult. In 

applications where predictive models of human 

decision-making assume the function of humans in the 

work, cognitive models are generally beginning to play a 

direct role. For many years, IBL models have been used 

in a variety of fields, such as repeated binary choice 

decisions, multi-choice sequential decisions, predictions 

of human reliance on automation, predictions of human 

Theory of Mind in gridworlds, and predictions of 

cognitive biases in human decision making (such as 

confirmation bias, anchoring and adjustment, 

probability matching, and base rate neglect). IBL models 

have been frequently utilized in the field of cybersecurity 

to simulate how people make decisions in a range of 

activities requiring deception in insider attack games, 

intrusion detection systems, and susceptibility to 

phishing emails. Nevertheless, despite their success, 

current IBL models of human attackers frequently have 

them perform relatively easy tasks that abstract the 

complexity of cyber-related circumstances. Additionally, 

such challenges need frequent attacker-defender 

interactions since doing so enables IBL models to collect 

experiential learning and produce more precise 

predictions. When conducting network reconnaissance, 

Thakoor suggested using a Risk-Based Cyber 

Camouflage Game (also known as a masking algorithm) 

to change the answers given to attackers' questions. 

Their algorithm is based on a general sum Stackelberg 

game model, in which the attacker scans the network 

and selects a system to attack based on the system's 

responses, and the defender configures the network with 

a deception strategy (i.e., how the system should 

respond to scan queries from an attacker). In this case, 

the gains for the attackers and the losses for the 

defenders could differ. In order to determine the 

deception approach that maximizes utility, the masking 

algorithm evaluates the worst-case scenario for a 

risk-averse attacker (i.e., computes the minimal utility 

that a given deception method would generate). The 

authors demonstrate the NP hardness of this problem 

and offer a mixed-integer linear programme to calculate 

the best answer. Each computer in a network has a 

unique True Configuration (TC), which reflects its 

unique characteristics and vulnerabilities. To make the 

Observed Configuration (OC) from the attacker's point 

of view considerably different from the Technical 

Configuration (TC) of a computer, the defender works to 

obscure the properties. Any machine with TC has 

associated values that, if successfully attacked, benefit 

the attacker and harm the defense, respectively. Due to 

the sequential structure of the choices, the interaction 

between the attacker and the defense is modeled as a 

Stackelberg Security Game (SSG). The leader who is 

aware of the real status of the network, or the number of 

TC machines, is the defender. With this knowledge, the 

defender masks the TCs with OCs. This assignment 

approach is expressed as an integer matrix, with each 

entry indicating the number of machines with TC that 

are covered up by OC. Using these techniques is subject 

to the following domain constraints: There are two 

limitations on masking any TC with an OC: 1) a 

feasibility restriction (i.e., some OCs cannot realistically 

mask with particular TCs); and 2) a budget for the 

defender. A defense strategy is created within these 

limitations. A logical attacker engages in an attack on a 

pair that maximizes predicted utility. Weak Stackelberg 

Equilibria result from the constraint to a pure strategy, 

which forces the defender to take into account the 

worst-case tie-breaking for the attacker in the event of 

indifference. Therefore, the defense tries to select a tactic 

to maximize utility, supposing a rational attacker who 

maximizes utility. This tactic, which presupposes 

rational attackers, is known as the WSE Model. 

According to prospect theory, risk-averse attackers make 

judgements based on a value transformation function 
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that is monotonic rising and concave. Any reward 

(namely, the value of the targeted computer) is seen as. 

With capturing the attacker's risk aversion, and, an 

appropriate constant, is a typical parametric form 

suggested in literature. It is difficult to learn the 

parameters. This may be achieved by gathering attacker 

answers to methods that were produced randomly, then 

generating a maximum probability estimate of the 

supplied instances. Once calculated, the defender 

determines the risk-averse attacker's best course of 

action by altering the WSE method and substituting the 

modified values for the valuations. This tactic is known 

as the Prospect Theory (PT) Model. The resemblance 

between the current circumstance and the precedent 

cases stored in memory is computed whenever a new 

judgment has to be taken. The model calculates an 

estimated utility for each choice option by blending the 

average of previous results weighted by how likely they 

are to be remembered in the future. Calculating the 

likelihood of memory retrieval involves comparing an 

instance's memory activation to that of all other 

instances stored in memory. The ACT-R cognitive 

architecture has a formal definition for the idea of an 

instance being activated. The activation is influenced by 

the contextual resemblance to prior instances, the 

frequency of encountering comparable cases, and the 

recentness of a prior occurrence. This may be achieved 

by gathering attacker answers to methods that were 

produced randomly, then generating a maximum 

probability estimate of the supplied instances. Once 

calculated, the defender determines the risk-averse 

attacker's best course of action by altering the WSE 

method and substituting the modified values for the 

valuations. This tactic is known as the Prospect Theory 

(PT) Model. The model is initialized with instances from 

the practice round that correspond to either successful 

attacks or unsuccessful attacks to start the job. These 

initial examples depict the payment expectations that 

human participants are probably going to pick up 

during the practice round and employ in the actual task 

rounds. The model initially processes each of the task's 

10 rounds' worth of choice alternatives from the 

matrices. The blending method is used by the attacker's 

model to determine the predicted utility for each of the 

choice possibilities. Each of these examples of the 

alternatives considered, together with their blended 

values, are stored in the model. By analysing the 

information provided in the form of the matrix, this 

technique simulates how people would scan various 

devices during the exploration phase and generate 

expectations. The option with the greatest blended value 

is the one the model chooses to attack after calculating 

the expected utility of each alternative. The chosen 

choice and the actual result are then retained in memory. 

For each of the task's ten rounds, the exploration and 

exploitation procedure is repeated. By simulating each 

individual attacker using this IBL model, we were able to 

compare the model's performance to the actual outcomes 

of the two experimental situations, WSE and PT, as 

previously mentioned. For the CyberVAN experiment, 

the IBL model mentioned above was run 1500 times in 

each condition to get reliable estimations of the 

participants' performance. Although the 1500 agents 

running in this simulation contribute to produce "stable" 

predictions for the model, the stochastic nature of the 

model causes the data they create to vary much like 

human data does. The model (i.e., agent) underwent the 

identical process as each human participant throughout 

each run. The results of the model's simulation versus 

actual data under the WSE and PT conditions are then 

shown. Overall and for each of the matrices, the model 

forecasts more defender losses in the WSE than the PT 

defense plan. Note that we normalize the defender's loss 

between 0 and 1 before computing the RMSEs for the 

defender's loss. For the WSE and PT tactics, the 

corresponding RMSE values for the defender's losses are 

0.076 and 0.069, respectively. The IBL model can forecast 

the defender's losses properly in the majority of matrices, 

according to the RMSE values for defender losses in both 

the WSE and PT algorithms. Aggarwal et al. (2020b) used 

human tests to show that human attackers exhibit a 

risk-aversion bias while deciding whether to launch a 

cyberattack. Thakoor et al. (2020) used Prospect Theory 

(PT) to create a masking approach in order to take 

advantage of the risk-aversion bias of human attackers. 

In particular, Thakoor et al. (2020) created two masking 

algorithms: the first approach (WSE) assumes full 

rationality while the second method (PT) takes 

advantage of restricted rationality in the form of risk 

aversion. In this study, we conduct an experiment to 

investigate the effectiveness of PT and WSE masking 

tactics against human attackers. 
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3. MARKOV SECURITY GAMES 

The usage of the Internet has lately seen a boom, and it 

is now prevalent across all socioeconomic strata. As the 

Internet has expanded, it has become more challenging 

to prevent unauthorized access to online data. Hackers, 

or those who attack computer networks, are always 

developing new techniques for taking advantage of 

flaws in computer systems. Security analysts, who work 

to secure computer systems, may apply software 

updates to close holes and defend against cyber-attacks. 

These software updates may be successful in removing 

vulnerabilities that are present in computer systems. 

These software updates might, however, be less 

successful as they could only partially fix an existing 

vulnerability or introduce a brand-new one. 

Consequently, a less effective software patch may only 

address vulnerabilities in a discrete area of the computer 

system. Previous studies have suggested that game 

theory is a useful tool for studying. human judgment in 

cyberattack circumstances. According to earlier studies, 

the impact of the efficiency of the patching operations on 

Markov security games may be used to study cyber 

decision-making. Human players take on the roles of 

hackers and analysts in the Markov security game, 

where hackers can take attack or not-attack actions and 

analysts can take defend (patch) or not-defend 

(not-patch) activities. Both participants may get payoffs 

(outcomes) as a result of their activities, and the 

interaction between hackers and analysts occurs 

repeatedly during the course of a game. According to the 

Markov assumption, an analyst's decision in the 

previous round affects how vulnerable the computer 

system is in the current round to an attack. Most of the 

time, patching vulnerabilities can increase a computer 

system's security (i.e., make it less susceptible to 

cyberattacks); however, in some circumstances, patching 

vulnerabilities can also result in unresolved 

vulnerabilities (i.e., patching may be ineffective, leaving 

the computer system open to attacks). In a preliminary 

study, Markov security game decision-making was 

examined. In the absence of fixes, cyberattacks may 

result in damages that grow problematic as the attacks 

spread throughout computer systems, according to the 

cited source. Conversely, when analysts are able to 

promptly fix existing vulnerabilities in computer 

systems, damages to those systems are reduced. These 

results are consistent with the dynamics of Markov 

security games. Researchers have used mathematical 

simulation approaches to make predictions about the 

Nash equilibria using Markov security games; however, 

these authors did not conduct an empirical analysis of 

human activities in relation to Nash predictions. A 

recurring 2 × 2 zero-sum game is the Markov security 

game. In this game, a hacker and an analyst compete 

against one another. The goal for both opponents is to 

maximize individual payoffs by continually selecting 

choices over a number of rounds (both opponents are 

unaware of the final destination). The analyst can take a 

defend (d) and a not-defend (nd) action, but the hacker 

can only take an attack (a) and a not-attack (na) action. 

Defend activities include correcting computer system 

vulnerabilities, whereas attack actions involve assaulting 

a computer system. When playing the game against 

another human, one human player is chosen at random 

to play the hacker, and the other human player is chosen 

to play the analyst. Between two succeeding rounds, the 

transition from state v to state nv or from state nv to state 

v depends on how well the patching procedure worked. 

If the patching procedure is successful, the likelihood of 

transitioning from state nv to state v is low (= 0.1) while 

the probability of transitioning from state v to state nv is 

high (= 0.8). If the patching is less successful, the 

likelihood of transitioning from state nv to state v and 

from state v to state nv is equal (= 0.5). People often want 

to maximise their perceived reward across acts, 

according to IBLT. In IBLT, the blended values 

calculated for various activities are what define the 

apparent payoffs. These players would likely have 

distinct perceived payoffs in both scenarios since their 

opponents acting as hackers and analysts would have 

different payoffs under effective and ineffective patching 

situations. We also anticipate variations in cognitive 

characteristics relating to dependence upon recency and 

frequency of outcomes, attention to opponent's activities, 

and cognitive noise across different effective and 

less-effective patching settings based on IBLT. 

Furthermore, IBLT predicts that human judgements will 

dramatically diverge from their Nash proportions under 

various patching settings. Most of the time, patching 

vulnerabilities can increase a computer system's security 

(i.e., make it less susceptible to cyberattacks); however, 

in some circumstances, patching vulnerabilities can also 

result in unresolved vulnerabilities (i.e., patching may be 

ineffective, leaving the computer system open to 

attacks). In a preliminary study, Markov security game 

decision-making was examined. In the absence of fixes, 

cyberattacks may result in damages that grow 

problematic as the attacks spread throughout computer 

systems, according to the cited source. Conversely, when 

analysts are able to promptly fix existing vulnerabilities 

in computer systems, damages to those systems are 

reduced. These results are consistent with the dynamics 

of Markov security games. To interpret human 

behaviour in the Markov security game, Researchers 

created a model based on IBLT. A circumstance in a task 

(a collection of qualities that characterise the decision 
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situation), a decision in a task, and an outcome as a result 

of that decision in that situation make up an instance, or 

the smallest unit of experience, in the IBL model. 

Through a generic decision-making process, several 

components of an instance are built: a scenario is created 

from task attributes, a choice and anticipation of an 

outcome are made while making a judgment, and the 

outcome is updated in the feedback stage when the 

actual outcome is known. Instances are utilized 

frequently to make choices in the IBL model after they 

accumulate over time in memory and are retrieved from 

memory. A statistical method known as activation, 

which was first used in the ACT-R cognitive 

architecture, is used to gauge this availability. By only 

enabling two single-person models to continually 

engage with each other in the game, we may construct 

our model for two-player security games. Each instance 

in the IBL model is made up of a label that designates the 

choice each participant was given—for the hacker, it was 

to attack or not to attack, and for the analyst, it was to 

defend or not to defend—as well as the result that was 

reached. The structure of an instance for both players is 

just (alternative, result), as the circumstance is constant 

for each binary choice. Calculating the blended value of 

the choices is the first step in the process of choosing 

decision alternatives in the model for each round t in the 

game. The choice that has the highest blended value is 

then made. The likelihood of retrieving examples from 

memory that correspond to those outcomes and the 

outcomes happening in the option determine an option's 

blended value. Furthermore, the likelihood of retrieving 

instances from memory depends on how recently and 

frequently those instances have been retrieved from 

memory, which determines how likely it is that those 

instances will be retrieved. Researchers implemented 

two models, (1) Calibrated model, in which the values of 

the free parameters were determined by calibration 

using a genetic algorithm; (2) ACT-R model, in which the 

model's free parameters were set to their default values 

according to ACT-R. In the Markov security game, two 

identical IBL model agents played participants for 50 

rounds under two distinct settings, just as two human 

participants would have. A trial's outcomes were 

decided by the choices made by both agents, who 

employed independent blending and activation methods 

with different sets of parameters, in each of the model 

settings. The three unrestricted parameters for each 

agent were: w attentiveness to opponent's activities, s 

noise, and d decay. Instances are utilised frequently to 

make choices in the IBL model after they accumulate 

over time in memory and are retrieved from memory. A 

statistical method known as activation, which was first 

used in the ACTR cognitive architecture, is used to 

gauge this availability. By only enabling two 

single-person models to continually engage with each 

other in the game, we may construct our model for 

two-player security games. Each instance in the IBL 

model is made up of a label that designates the choice 

each participant was given—for the hacker, it was to 

attack or not to attack, and for the analyst, it was to 

defend or not to defend—as well as the result that was 

reached. The structure of an instance for both players is 

just (alternative, result), as the circumstance is constant 

for each binary choice. Calculating the blended value of 

the choices is the first step in the process of choosing 

decision alternatives in the model for each round t in the 

game. The choice that has the highest blended value is 

then made. The likelihood of retrieving examples from 

memory that correspond to those outcomes and the 

outcomes happening in the option determine an option's 

blended value. Furthermore, the likelihood of retrieving 

instances from memory depends on how recently and 

frequently those instances have been retrieved from 

memory, which determines how likely it is that those 

instances will be retrieved. There is an urgent need to fix 

systems since cyberattacks are increasing quickly. 

Computer systems include vulnerabilities. The 

vulnerability patching procedure might not be perfect, 

though. However, in other situations, patching may be 

less successful and leave computer systems open to 

assaults. In other scenarios, patching may be effective 

and make the computer systems less vulnerable to 

cyberattacks. Results showed that whether patching 

operations were effective and less-effective, the 

proportion of attack and defense activities was 

comparable. Additionally, in most situations and states, 

both players greatly diverged from their ideal Nash 

proportions. First, it was discovered that both patching 

situations had a comparable proportion of attack and 

defense activities. The closeness in payment magnitudes 

and valances between the two patching circumstances 

may be a contributing factor to this conclusion. IBLT 

claims that people maximize their perceived reward 

across acts, as was already noted. Participants acting as 

hackers and analysts saw comparable payoffs under 

various patching situations, hence they probably had 

comparable perceived payoffs in both circumstances. 

The proportion of attack and defend activities, we 

discovered, greatly differed from their Nash 

proportions. Once more, the IBLT may be used to 

illustrate this expectation. Human participants, 

according to IBLT, have cognitive constraints on 

memory and recall processes, and people frequently 

base their judgements on the recentness and frequency 

of results. It seems that our experiment's dependence on 

recency and frequency processes prevented participants 
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from developing the best Nash expectations for their 

behavior, leading them to dramatically diverge from 

Nash proportions in a number of circumstances and 

states. 

 

4. WORKPLACE 

The unique Cybonto conceptual framework seeks to 

offer broad guidelines for responding to the concerns 

raised about the vision of DTs and HDTs for 

cybersecurity. The framework uses an HDT within a DT 

system to simulate the malicious actor's thought process. 

The Cybonto ontology's behavioral/cognitive component 

serves as the definition of cognitive space. The HDT's 

repertoire of stored actions, its capacity for creating 

original movements, and the interaction interfaces of the 

other DTs all serve to constrain the action space. From 

the body of research in behavioural and cognitive 

psychology, fifty ideas were first chosen. The research 

potential, applicability to criminology and cybersecurity, 

and coherence of each theory were taken into account 

while ranking them. Each hypothesis was then 

formalised as tuples consisting of an entity, a "influence" 

connection, and an entity. Analysing the Cybonto 

ontology led to the creation of the Cybonto conceptual 

framework. Each DT's internal environment (INE) is 

personal. It consists of both cognitive and non-cognitive 

elements. The social environment (SOE), in contrast to 

the interior environment, is a public space. The in-group 

environment (IGE) bridges the gap between INE and 

SOE. Bronfenbrenner's Ecological System Theory, which 

defines influences as progressive, variable, and 

reciprocal forces among people and surroundings, 

governs all ecosystems. For instance, an apparently 

distant public event could yet have an impact on specific 

internal brain functions. The intended HDT is related to 

the IEG and the SOE. The micro- and mesosystems of 

Bronfenbrenner are analogous to the IEG. The 

microsystem, which includes members like family, close 

friends, school, lovers, and mentors, is the most 

influencing external environment. The Exo-, Macro-, and 

Chrono-systems of Bronfenbrenner are the equivalent of 

SOE. Four individuals from four DT groups are required 

to participate in the Cybonto conceptual framework. 

Both an attacker and a defender HDT are required. An 

attacker HDT must gather the data on its own, unlike 

older models, to which data and feature specifications 

were explicitly given. If the essential requirements of the 

group are not satisfied, group-related facts cannot be 

derived. Thus, to present IEG and SOE IDs, we then 

require at least two additional DTs. An HDT is capable 

of two different sorts of behaviours: those that create or 

modify artefacts and those that do not. A complicated 

noncognitive digital twin can be considered an artefact, 

as can a single line of code. Viewing a malware's source 

code is a non-artifact behaviour, however running the 

code, if it modifies other artefacts, may be an 

artifactalteringbehaviour. The internal and exterior 

environments (IEG and SOE) and the perceptual layer 

are in close proximity to one another. The identical data 

streams will be seen differently by various perceptual 

layers working together with various cognitive systems. 

Only a small portion of a digital cognitive system is 

made up of refined perceptions. Numerous cognitive 

pathways for handling initial impressions are described 

in great detail by the Cybonto ontology. Either a 

non-artifact behaviour or an artefact creating/altering 

behaviour is the outcome of a cognitive processing chain. 

The behaviours (data streams) are monitored by other 

HDTs, and a new cycle of feedback loops starts. It is 

important to remember that an in-group setting might 

allow for the concealment of a behaviour. Out of more 

than thirty options, Cybonto selected the Basic Formal 

Ontology (BFO) as its top-level ontology. Out of more 

than thirty options, Cybonto selected the Basic Formal 

Ontology (BFO) as its top-level ontology because it is the 

only top-level ontology that rejects materialism and 

commits to real-world possibilities. The only top-level 

ontology that embraces materialism, affirms real-world 

possibilities, and possesses an intensional identity 

requirement is BFO. By using the Mental Functioning 

(MF) as its mid-level ontology, the Cybonto Core (the 

behavioral/cognitive component) is deeper grounded. 

MF adheres to the OBO Foundry's recommended 

practices and coordinates with other initiatives in the 

Cognitive Atlas, a cutting-edge collaborative 

information source for cognitive science. A fundamental 

tenet of DT tactics, materialism sees the world as a 

collection of materialized objects existing in space and 

time. Cybonto's representation of mental structures is 

fundamentally different when one commits to 

materialism through BFO. Cognitive processes were 

long thought to be abstract details that could only be 

expressed through language. The majority of behavioral 

components in cybersecurity ontologies are 
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language-based due to this heritage. Measurements of 

brain processes that correlate to certain cognitive 

conceptions are now possible because of recent 

advancements in the brain-machine interface, such as 

those made by Neuralink. As a result, behavioral and 

cognitive ontologies may now be grounded in 

materialism. Conceptual objects, various language 

descriptions of the same actual things, process-based 

objects, and qualitative object labels that are impossible 

to assess in the real world are all rejected by Cybonto. A 

greater link value is shown by a link color that is darker. 

Automatically, nodes were placed in a multi-circle 

structure with nodes closer to the center having a greater 

betweenness centrality. Top Authority Central (AC) 

constructions are influenced by those that have the most 

sway over other constructs. The constructions with the 

shortest pathways among other constructs are known as 

top Betweenness Central (BC) constructs. BC 

constructions have the potential to act as both gateways 

and bridges to other constructs and processes. Top 

Eigenvector Central (EC) structures act as the clique's 

ringleaders. A collection of constructs known as a clique 

consists of individuals who are connected to one 

another. A clique may stand for a potent 

cognitive/behavioral pattern in the context of the 

cognitive digital twin. The top EC constructions have 

connections with members of other cliques in addition to 

their own clique members. When the neighbours at one 

end of a link are the most dissimilar from the neighbours 

at the other end, the link has the highest contribution 

weight. Top Incoming Central (IC) constructions are 

impacted by the most significant in-coming neighbours, 

whilst top Out-degree Central (OC) constructs have the 

greatest out-links (influencing) to others. The most 

influential neighbours are connected to the top 

PageRank constructions in some way, either through 

inbound or outbound interactions. Behaviour, Arousal, 

Goals, Perception, Self-efficacy, Circumstances, 

Evaluating, Behavior-Controlabiity, Knowledge, and 

Intentional Modality are the top 10 components across 20 

network centrality measurements. Only the items on this 

list—although some are implicitly implemented—are 

components of current digital cognitive architectures: 

Behaviours, Goals, Perception, Evaluating, and 

Knowledge. Before this study, significant cognitive 

structures may have been examined separately for 

different usecases and hence were unable to be jointly 

brought to the notice of traditional cognitive system 

designers. Now that we have a broad perspective of 20 

behavioural theories, we may give these top 10 

components more attention. We may think about 

implementing Goals, Knowledge, Perception, and 

Evaluating explicitly and at a finer granularity within 

cognitive architectures. For instance, experience extends 

beyond fleeting sensory perception. For instance, 

whether Bob is with Alice or not, Alice continues to think 

of Bob as a decent person. We should also think about 

include Arousal and Intentional Modality. Despite being 

a non-cognitive construct, arousal is placed second and 

has an impact on several of the top 10 cognitive 

constructs, including evaluating and intentional 

modality. Sadly, there is currently very little study on 

arousal as a component of the digital cognitive process. 

There are a few studies looking at the consequences of 

general emotions, according to SOAR-related research 

results. There are just four studies in the ACT-R research 

library that examine how arousal affects memory 

management. Another non-cognitive concept that 

significantly affects behavioural outcomes is the 

Circumstance. The research recommends incorporating 

non-physical environment factors including urgency, 

group dynamics, and social attitudes into the current 

Mental Image module in existing cognitive architectures. 

 

5.  ANALYSIS 

One of their challenges comes from the fact that 

game-theoretic/ML algorithms typically rely on 

enormous amounts of data to match the model 

parameters. To completely comprehend how different 

defence algorithms could function in practical situations, 

it often involves human involvement and the gathering 

of a sizable quantity of data on human decision-making 

in sectors like cybersecurity. These therapies, regrettably, 

are exceedingly challenging. Cognitive models are often 

starting to play a more direct part in applications where 

human decision-making prediction models take over the 

job of people in the task. Given the tendency for people 

to choose the safe choice, it is crucial to note that the PT 

method would attempt to avoid creating matrices in 

which a true configuration would perfectly match an 

observable configuration. The only instance where the 

PT method yielded a greater defense loss and more 

attacker success than the WSE approach, according to 

our observations, was when the matrix included a single 
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sure choice. This again implies that humans are unable 

to avoid such bias towards certainty and that a revision 

to the PT algorithm would be necessary to ensure that 

such instances are avoided. Our human experiment is 

underpowered due to the small number of participants, 

which may restrict the conclusions we can draw from it. 

It is often difficult to find participants with specialized 

knowledge, such as cybersecurity experience, and 

gathering 45 individuals required a large effort in data 

collection. We can simulate many more participants in 

each condition thanks to the IBL model's precise 

duplication of the choices. The masking techniques are 

capable of adding network limitations that are relevant 

in other realistic circumstances, even if the algorithm 

and the tests in this research have been carried out for a 

small number of nodes and straightforward network 

architectures. Similar to this, IBL models could also be 

able to adapt to various cybersecurity circumstances, 

albeit there may be a run-time restriction, which might 

be a bottleneck for big systems. We created a knowledge 

of how human attackers make judgements through trials 

and simulations. Attackers don't make rational 

decisions; instead, they follow biases like certainty and 

risk aversion. Human attackers make less-than-optimal 

judgements, diverging from the anticipated ideal 

activities that certain defense systems presume. Defense 

algorithms may lessen overall losses from cyberattacks if 

they are created to take advantage of such biases in 

attacker decision-making. For the Markov Security 

Games, Researchers discovered that the calibrated IBL 

model outperformed the ACT-R model in accounting for 

human judgements under both patching situations. The 

fact that the model appears to be unable to collect human 

data when using the default ACT-R settings is one 

plausible explanation. However, recalibrating these 

parameters significantly enhanced the model's own 

performance. First, given our findings, we predict that 

analysts will continue to overpatch computer systems in 

the real world, regardless of how effective and optimum 

these patching choices are. Second, it appears that 

hackers do not consider whether computer systems have 

been adequately patched while targeting networks. 

Hackers are concerned about how susceptible computer 

systems are to their attacks, though. Therefore, this sense 

of vulnerability is likely to have an impact on hackers' 

choices about cyberattacks. It can be crucial to present 

computer networks as less susceptible to cyberattacks in 

the real world. There are several ways to achieve this, 

including through social media, publications, reports, 

and multimedia. Additionally, IBLT-based models might 

be applied to account for cyber choices. The hacker 

models, for instance, might be used to mimic hacker 

choices about updates and vulnerabilities. Analyzer 

models may also be used to defend against various 

cyberattacks by automating the patching procedures. 

The cognitive aspects of the patching procedures may 

also be evaluated with the use of this research. Data was 

first gathered from people with degrees in computer 

science and backgrounds in the STEM fields. These 

individuals could still vary from hackers in the real 

world, though. Second, based on the hacker's view of the 

system's possible vulnerability, this study made the basic 

assumption that the hacker would continually choose to 

either attack or refrain from attacking the system. The 

analyst had a choice as to whether to fix the system or 

not in the meantime. As a result, the experiment in this 

study had a simple architecture and might not have been 

totally compatible with other automated hacker 

operating systems. For instance, in opportunistic/light 

touch attacks, a hacker may try to take advantage of a 

weakness against a large number of systems. These 

assaults could be widespread and they might not entail 

individual system-level decisions made by humans. 

Similar to this, there may be several weaknesses in 

focused assaults. These assaults could be widespread, 

and they might not entail individual system-by-system 

decisions made by humans. Similar to targeted assaults, 

a single system may be subjected to several vulnerability 

tests. For instance, in targeted assaults, the hacker may 

progressively test a large library of known exploits for a 

certain system of interest. Once more, targeted assaults 

could be launched using automated procedures rather 

than ones that need human judgment at every stage. As 

a result, they might not follow the hacker's modus 

operandi as intended. In this situation, the suggested 

analyst's model may aid in understanding their cognitive 

and decision-making processes against such automated 

attacks. 

 

6.  CONCLUSION 

Overall and for each of the matrices, the model 

forecasts more defender losses in the WSE than the PT 

defense plan. Note that we normalize the defender's loss 

between 0 and 1 before computing the RMSEs for the 
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defender's loss. For the WSE and PT tactics, the 

corresponding RMSE values for the defender's losses are 

0.076 and 0.069, respectively. The IBL model can forecast 

the defender's losses properly in the majority of matrices, 

according to the RMSE values for defender losses in both 

the WSE and PT algorithms. The IBL model's results 

showed that it can, on average, forecast defenders' 

success and loss rates under both PT and WSE scenarios. 

A model that performs well on average may, however, 

be unable to account for the heterogeneity in individual 

decisions. In this part, we compare the human data to the 

distribution of the individual machine selection 

predicted by the IBL model. In both the WSE and PT 

techniques, the IBL model can typically describe the 

distributions of human preferences. The IBL model 

captures both the selection behavior under both 

situations as well as human behavior at the aggregate 

level. The noise in the IBL model might be the cause of 

some of the variations that are seen in the figure. 

 

7.  FUTURE DIRECTIONS 

According to studies, the sense of vulnerability affected 

hackers' choices, and there are a variety of techniques to 

mould this view. For instance, one may use honeypots, 

which are easily attackable systems, to deceive computer 

networks. The second option is to use 

intrusion-detection systems (IDSs) and inform hackers of 

their presence and precision. For instance, if hackers are 

informed that IDSs are absent or that they are there but 

are less effective, this knowledge is likely to affect how 

vulnerable the network is to their assaults. Again, in this 

instance, the IDSs can be useful in forcing hackers to 

target specific systems (like honeypots) over others and 

in making them fall victim to such assaults. Hackers and 

analysts might not have access to knowledge regarding 

an opponent's behavior in the real world. Therefore, it 

would be fascinating to explore how hackers' and 

analysts' judgements are impacted by the availability 

and lack of knowledge on adversaries' actions. Along 

with these concepts, we also want to look at how other 

cognitive processes, such as similarity, spreading 

activation, and cognitive inertia, play a part in our 

models. Additionally, this research made a 

practice-unlike assumption that the analyst would have 

complete freedom in trying to optimize the application 

of fixes. For instance, in the real world, the majority of 

patching may be controlled by an operational policy 

(such as the Common Vulnerability Scoring System) that 

allows analysts to deploy patches addressing 

vulnerabilities of a specific severity within a specified 

time frame. Therefore, vital patches can be applied 

quickly, but non-critical fixes can take a while to apply. 

Therefore, scenarios where analysts choose between 

essential and less-critical fixes may be tested in future 

research, and the success of patching may apply to both 

types of patches. We will start working on some of these 

concepts right away as part of our current research 

programme in game theory and cyber-security. 
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