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Deep neural networks are now the state-of-the-art machine learning models across a variety of areas, from image analysis to 

natural language processing, and considerably posted in academia. These developments have a huge eventuality for medical 

imaging technology, medical data analysis, medical diagnostics and healthcare in general, sluggishly being realized. A short 

overview of recent advances and some associated challenges in machine literacy applied to medical image processing and image 

analysis are provided in this paper. This paper focuses on deep literacy in MRI. The tremendous success of machine literacy 

algorithms at image recognition tasks in recent times intersects with a time of dramatically increased use of electron medical 

records and individual imaging. This review introduces the machine learning algorithms applied to medical image analysis, 

fastening on convolutional neural networks, and emphasizing clinical aspects of the field. The advantage of machine literacy in  

medical big data is that a significant Hierarchal connections within the data can be discovered algorithmically without 

laborious hand-casting of features. Moreover, Crucial exploration areas and operations of medical image bracket, localization, 

discovery, segmentation, and enrollment are emphasized and the paper concludes by agitating exploration obstacles, arising 

trends, and possible unborn directions. 

 

KEYWORDS – Convolutional neural networks, medical image analysis, machine learning, deep learning.  

1. INTRODUCTION 

Machine learning has seen some dramatic developments 

recently, leading to a lot of interest from industry, 

academia user-friendly software frameworks, and an 

explosion of the available compute power, enabling the 

use of neural networks that are deeper than ever before 

[27]. These models nowadays form popular culture. 

These are driven by breakthroughs in the state-of-the-art 

approach to a wide variety of problems in artificial 

neural networks, often termed deep learning, a set of 

techniques and algorithms that enable computers to 

discover complicated patterns in large data sets. Feeding 

the breakthroughs is the increased access to data (“big 

data”), computer vision, language modeling and 

robotics. Deep learning rose to its prominent position in 

computer vision when neural networks started 

outperforming other methods on several high-profile 

image analysis benchmarks. Most famously on the 

ImageNet Large-Scale Visual Recognition Challenge 

(ILSVRC) in 2012 when a deep learning model (a 

convolutional neural network) halved the second-best 

error rate on the image classification task. Enabling 
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computers to recognize objects in natural images was 

until recently thought to be a very difficult task, but by 

now convolutional neural networks have surpassed 

even human performance on the ILSVRC, and reached a 

level where the ILSVRC classification task is essentially 

solved (i.e., with error rate close to the Bayes rate). Deep 

learning techniques have become the de facto standard 

for a wide variety of computer vision problems. They 

are, however, not limited to image processing and 

analysis but are outperforming other approaches in areas 

like natural language processing, speech recognition and 

synthesis and in the analysis of unstructured, 

tabular-type data using entity embeddings. The sudden 

progress and wide scope of deep learning, and the 

resulting surge of attention and multi-billion-dollar 

investment, has led to a virtuous cycle of improvements 

and investments in the entire field of machine learning 

[28]. It is now one of the hottest areas of study 

world-wide, and people with competence in machine 

learning are highly sought-after by both industry and 

academia. Healthcare providers generate and capture 

enormous amounts of data containing extremely 

valuable signals and information, at a pace far 

surpassing what “traditional” methods of analysis can 

process. Machine learning therefore quickly enters the 

picture, as it is one of the best ways to integrate, analyze 

and make predictions based on large, heterogeneous 

data sets (cf. health informatics). Healthcare applications 

of deep learning range from one-dimensional bio signal 

analysis and the prediction of medical events, e.g. 

seizures and cardiac arrests, to computer-aided detection 

and diagnosis supporting clinical decision making and 

survival analysis , to drug discovery and as an aid in 

therapy selection and pharmacogenomics , to increased 

operational efficiency, stratified care delivery, and 

analysis of electronic health records. Machine learning 

algorithms have the potential to be invested deeply in all 

fields of medicine, from drug discovery to clinical 

decision making, significantly altering the way medicine 

is practiced. The success of machine learning algorithms 

at computer vision tasks in recent years comes at an 

opportune time when medical records are increasingly 

digitalized [30]. The use of electronic health records 

(EHR) quadrupled from 11.8% to 39.6% amongst 

office-based physicians in the US from 2007 to 2012. 

Medical images are an integral part of a patient's EHR 

and are currently analyzed by human radiologists, who 

are limited by speed, fatigue, and experience. It takes 

years and great financial cost to train a qualified 

radiologist, and some health-care systems outsource 

radiology reporting to lower-cost countries such as India 

via tele-radiology. A delayed or erroneous diagnosis 

cause harm to the patient. Therefore, it is ideal for 

medical image analysis to be carried out by an 

automated, accurate and efficient machine learning 

algorithm. Medical image analysis is an active field of 

research for machine learning, partly because the data is 

relatively structured and labelled, and it is likely that this 

will be the area where patients first interact with 

functioning, practical artificial intelligence systems. This 

is significant for two reasons. Firstly, in terms of actual 

patient metrics, medical image analysis is a litmus test as 

to whether artificial. The aim of the work presented in 

this paper is to develop and test a Deep Learning 

approach for brain tumor classification and 

segmentation using a Multiscale Convolutional Neural 

Network. To train and test the proposed neural model, a 

T1-CE MRI image dataset from 233 patients, including 

meningiomas, gliomas, and pituitary tumors in the 

common views (sagittal, coronal, and axial), has been 

used. Figure 1 shows examples of these three types of 

tumors. Additional information on the dataset is 

included in Section 2.2. The proposed model is able to 

segment and predict the pathological type of the three 

kinds of brain tumors, outperforming previous studies 

using the same dataset. 

 
Figure 1. Examples of MRI images of the T1-CE MRI 

image dataset. Left: coronal view of a meningioma 

tumor. Center: Axial view of a glioma tumor. Right: 

sagittal view of a pituitary tumor. Tumor borders have 

been highlighted in red. 

 

In the BTS field, two main tumor segmentation 

approaches can be found: generative and discriminative. 

Generative approaches use explicit anatomical models to 

obtain the segmentation, while discriminative methods 

learn image features and their relations using gold 

standard expert segmentations. Published studies 
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following the discriminative approach have evolved 

from using classical Machine Learning to more recent 

Deep Learning techniques. 

2. PRELIMINARIES AND RELATED WORK 

In this section, firstly, we propose a multi-pathway 

CNN, for tumor segmentation. The CNN architecture 

processes an MRI image (slice) pixel by pixel covering 

the entire image and classifying each pixel using one of 

four possible outputs 

 

2.1. Machine learning, artificial neural networks, deep 

learning 

In machine learning one develops and studies methods 

that give computers the ability to solve problems by 

learning from experiences. The goal is to create 

mathematical models that can be trained to produce 

useful outputs when fed input data. Machine learning 

models are provided experiences in the form of training 

data, and are tuned to produce accurate predictions for 

the training data by an optimization algorithm. The main 

goal of the models are to be able to generalize their 

learned expertise, and deliver correct predictions for 

new, unseen data. A model’s generalization ability is 

typically estimated during training using a separate data 

set, the validation set, and used as feedback for further 

tuning of the model. After several iterations of training 

and tuning, the final model is evaluated on a test set, 

used to simulate how the model will perform when 

faced with new, unseen data. There are several kinds of 

machine learning, loosely categorized according to how 

the models utilize its input data during training. In 

reinforcement teaching one constructs agents that learn 

from their environments through trial and error while 

optimizing some objective function. A famous recent 

application of reinforcement learning is AlphaGo and 

AlphaZero, the Go-playing machine learning systems 

developed by DeepMind. In unsupervised learning the 

computer is tasked with uncovering patterns in the data 

without our guidance. Clustering is a prime example. 

Most of today’s machine learning systems belong to the 

class of supervised learning. Here, the computer is given 

a set of already labeled or annotated data, and asked to 

produce correct labels on new, previously unseen data 

sets based on the rules discovered in the labeled data set. 

From a set of input-output examples, the whole model is 

trained to perform specific data-processing tasks. Image 

annotation using human-labeled data, e.g. classifying 

skin lesions according to malignancy  or discovering 

cardiovascular risk factors from retinal fundus 

photographs, are two examples of the multitude of 

medical imaging related problems attacked using 

supervised learning. Machine learning has a long history 

and is split into many sub-fields, of which deep learning 

is the one currently receiving the bulk of attention. There 

are many excellent, openly available overviews and 

surveys of deep learning. For short general introductions 

to deep learning, see. For an in-depth coverage, consult 

the freely available book. For a broad overview of deep 

learning applied to medical imaging, Only some bare 

essentials of the field, hoping that will serve as useful 

pointers to the areas that are currently the most 

influential in medical imaging are specified. 

 

2.2. Proposed Convolutional Neural Network and 

Implementation Details 

In this paper, we propose a multi-pathway CNN 

architecture (see Figure 2) for tumor segmentation. The 

CNN architecture processes an MRI image (slice) pixel 

by pixel covering the entire image and classifying each 

pixel using one of four possible output labels: 0— 

healthy region, 1—meningioma tumor, 2—glioma 

tumor, and 3—pituitary tumor. In our approach, we use 

a sliding window, thus each pixel is classified according 

to a N * N neighborhood or window, which is the input 

to our CNN architecture (see Figure2). Every window is 

processed through three convolutional pathways with 

three scale (large, medium, and small) kernels that 

extract the features. In our implementation, we chose a 

window of 65 * 65 pixels and kernels of size 11 * 11, 7 * 7 

and 3 * 3 pixels, respectively. 

The decision on the size of the windows was taken after 

preliminary configuration tests in which also 33 * 33 px 

and 75 * 75 px window sizes were tested. Each pathway 

is composed by two convolutional stages with ReLU 

rectification and 3 * 3 max-pooling kernels with a stride 

value of 2. The number of feature maps in the large, 

medium, and small pathways is 128, 96, and 64, 

respectively. We propose the use of a larger number of 

maps for larger scales with the assumption that the 

window features extracted using different filtering scales 

help to define the three kinds of tumor to be classified. 

Scale features from the three pathways are concatenated 

in a convolutional layer with 3 * 3 kernels with a ReLU 
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activation function and a 2 * 2 max-pooling kernel with a 

stride value of 2. The output of this stage enters a fully 

connected stage where 8192 concatenated scale features 

compose the classification method towards the four 

prediction label types. In order to prevent overfitting, the 

model includes a dropout layer before the fully 

connected layer. The last layer uses a SoftMax activation 

function. The proposed CNN has been implemented 

using Pytorch™. The number of trainable parameters in 

the neural network is near three million (2,856,932). All 

the tests have been performed in a Linux environment 

with an Intel Core i5 CPU and an Nvidia GTX1080 

T1-11GB GPU. The training process took 5 days, and the 

average prediction time per image was 57.5 s. 

 

Figure 2. The proposed Convolutional Neural Networks 

(CNN) architecture. Input: 1 X 65 X 65 sliding windows. 

Model: Three pathways (large, medium, and small 

feature scales) with 2 convolutional layers and 

max-pooling, a convolutional layer with concatenation 

of the three pathways, and a fully connected stage that 

leads to a classification in one out of the four possible 

output labels: 0—healthy region, 1—meningioma tumor, 

2—glioma tumor, and 3—pituitary tumor. A dropout 

mechanism between the concatenation and fully 

connected stages is included. 

 

2.3. Building blocks of convolutional neural networks 

When applying neural networks to images one can in 

principle use the simple feedforward neural networks 

discussed above. However, having connections from all 

nodes of one layer to all nodes in the next is extremely 

inefficient. A careful pruning of the connections based on 

domain knowledge, i.e. the structure of images, leads to 

much better performance. A CNN is a particular kind of 

artificial neural network aimed at preserving spatial 

relationships in the data, with very few connections 

between the layers. The input to a CNN is arranged in a 

grid structure and then fed through layers that preserve 

these relationships, each layer operation operating on a 

small region of the previous layer (Fig. 2). CNNs are able 

to form highly efficient representation of the input data, 

well-suited for image-oriented tasks. A CNN has 

multiple layers of convolutions and activations, often 

interspersed with pooling layers, and is trained using 

backpropagation and gradient descent as for standard 

artificial neural networks. In addition, CNNs typically 

have fully connected layers at the end, which compute 

the final outputs. (i) Convolutional layers: In the 

convolutional layers the activations from the previous 

layers are convolved with a set of small parameterized 

filters, frequently of size 3 × 3, collected in a tensor W (j,i) 

, where j is the filter number and i is the layer number. By 

having each filter share the exact same weights across 

the whole input domain, i.e. translational equivariance at 

each layer, one achieves a drastic reduction in the 

number of weights that need to be learned. The 

motivation for this weight-sharing is that features 

appearing in one part of the image likely also appear in 

other parts. If you have a filter capable of detecting 

horizontal lines, say, then it can be used to detect them 

wherever they appear. Applying all the convolutional 

filters at all locations of the input to a convolutional layer 

produces a tensor of feature maps. 

(ii) Activation layer: The feature maps from a convo 

approximate almost any nonlinear function. The 

activation functions are generally the very simple 

rectified linear units, or ReLUs, defined as ReLU(z) = 

max(0, z), or variants like leaky ReLUs or parametric 

ReLUs. Feeding the feature maps through an activation 

function produces new tensors, typically also called 

feature maps. (iii) Pooling: Each feature map produced 

by feeding the data through one or more convolutional 

layer is then typically pooled in a pooling layer. Pooling 

operations take small grid regions as input and produce 

single numbers for each region. The number is usually 

computed by using the max function (max-pooling) or 

the average function (average pooling). Since a small 

shift of the input image results in small changes in the 

activation maps, the pooling layers gives the CNN some 

translational invariance. A different way of getting the 

down sampling effect of pooling is to use convolutions 

with increased stride lengths. Removing the pooling 

layers simplifies the network architecture without 

necessarily sacrificing performance. Other common 
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elements in many modern CNNs include (iv) Dropout 

regularization: A simple idea that gave a huge boost in 

the performance of CNNs. By averaging several models 

in an ensemble, one tends to get better performance than 

when using single models. Dropout is an averaging 

technique based on stochastic sampling of neural 

networks. By randomly removing neurons during 

training, one ends up using slightly different networks 

for each batch of training data, and the weights of the 

trained network are tuned based on optimization of 

multiple variations of the network. (v) Batch 

normalization: These layers are typically placed after 

activation layers, producing normalized activation maps 

by subtracting the mean and dividing by the standard 

deviation for each training batch. Including batch 

normalization layers forces the network to periodically 

change its activations to zero mean and unit standard 

deviation as the training batch hits these layers, which 

works as a regularized for the network, speeds up 

training, and makes it less dependent on careful 

parameter initialization [66]. 

 

Figure 3. Building blocks of a typical CNN. A slight 

modification of a figure in *58+, courtesy of the author. 

In the design of new and improved CNN 

architectures, these components are combined in 

increasingly complicated and interconnected ways, or 

even replaced by other more convenient operations. 

When architecting a CNN for a particular task there 

are multiple factors to consider, including 

understanding the task to be solved and the 

requirements to be met, figuring out how to best feed 

the data to the network, and optimally utilizing one’s 

budget for computation and memory consumption. In 

the early days of modern deep learning, one tended to 

use very simple combinations of the building blocks, 

as in Lenet  and AlexNet. Later network architectures 

are much more complex, each generation building on 

ideas and insights from previous architectures, 

resulting in updates to the state-of-the-art. Table 1 

contains a short list of some famous CNN 

architectures, illustrating how the building blocks can 

be combined and how the field moves along. These 

neural networks are typically implemented in one or 

more of a small number of software frameworks that 

dominates machine learning research, all built on top 

of NVIDIA’s CUDA platform and the cuDNN library. 

Today’s deep learning methods are almost exclusively 

implemented in either TensorFlow, a framework 

originating from Google Research, Keras, a deep 

learning library originally built by Fran¸cois Chollet 

and recently incorporated in TensorFlow, or Pytorch, 

a framework associated with Facebook Research. 

There are very few exceptions (YOLO built using the 

Darknet framework is one of the rare ones). All the 

main frameworks are open source and under active 

development. 

 

3. SYSTEM FRAMEWORK 

To the researcher, CNNs have been put to task for 

classification, localization, detection, segmentation and 

registration in image analysis. Machine learning 

research draws a distinction between localization (draw 

a bounding box around a single object in the image), 

and detection (draw bounding boxes around multiple 

objects, which may be from different classes). 

Segmentation draws outlines around the edges of target 

objects, and labels them (semantic segmentation). 

Registration refers to fitting one image (which may be 2 

or 3 dimensional) onto another. This separation of tasks 

is based on different machine learning techniques and is 

maintained below. To the clinician this separation of 

tasks is not that crucial, and it is the authors' opinion 

that a pragmatic machine learning system will 

incorporate some or all of the tasks into a unified 

system. It would be ideal to, in a single workflow, detect 

a lung tumor on a CT chest scan, and then localize and 

segment it away from normal tissue, and to 

prognosticate various treatment options, such as 

chemotherapy or surgery. Indeed, some of these task’s 

blur into one another in the papers discussed here. 

From the clinician's perspective, classification ascertains 

if a disease state is present or not, i.e., is blood present 

on this MRI brain scan signifying a hemorrhagic stroke? 

Localization implies the identification of normal 

anatomy, for example, where is the kidney in this 

ultrasound image? This is in contrast to detection, 
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which implies an abnormal, pathological state, for 

example, all the lung tumors in the CT scan of the lung 

can be identified by segmenting the outline of a lung 

tumor that helps the clinician to determine its distance 

from major anatomical structures, and helps to answer a 

question such as, should this patient be operated on, 

and if so, what should be the extent of resection.  

 

FIGURE  4. In this example disease classification task, an 

input image of an abnormal axial slice of a T2-weighted 

MRI brain is run through a schematic depiction of a 

CNN. Feature extraction of the input image is performed 

via the Convolution, RELU and pooling layers, before 

classification by the fully connected layer.  

 

3.1   CLASSIFICATION 

Classification is sometimes also known as 

Computer-Aided Diagnosis (CADx). Lo et al. described a 

CNN to detect lung nodules on chest X-rays as far back 

as 1995. They used 55 chest x-rays and a CNN with 2 

hidden layers to output. whether or not a region had a 

lung nodule. The relative availability of chest x-ray 

images has likely accelerated deep learning progress in 

this modality. Rajkomar et al.  augmented 1850 chest 

x-ray images into 150,000 training samples. Using a 

modified pre-trained GoogLeNet CNN, they classified 

the orientation of the images into frontal or lateral views 

with near 100% accuracy. Although this task of 

identifying the orientation of the chest x-ray is of limited 

clinical use, it does demonstrate the effectiveness of 

pre-training, and data augmentation in learning the 

relevant image metadata, as part of an eventually 

fully-automated diagnostic workflow. Pneumonia or 

chest infection is a common health-problem world-wide 

that is eminently treatable. Rajpurkar et al.  employed a 

modified DenseNet with 121 convolutional layers called 

CheXNet to classify 14 different diseases seen on the 

chest x-rays, using 112,000 images from the ChestXray14 

dataset. CheXNet achieved state of the art performance 

in classifying the 14 diseases; pneumonia classification in 

particular achieved an Area Under Curve (AUC) score of 

0.7632 with Receiver Operating Characteristics (ROC) 

analysis. Moreover, on a test set of 420 images, CheXNet 

matched or bettered the performance of 4 individual 

radiologists, and also the performance of a panel 

comprising of 3 radiologists. Shen et al. used CNNs 

combined with Support Vector Machine (SVM) and 

Random Forest (RF) classifiers to classify lung nodules 

into benign or malignant, based on 1010 labelled CT lung 

scans from the Lung Image Database Consortium 

(LIDC-IDRI) dataset. They used 3 parallel CNNs with 2 

convolution layers each, with each CNN taking image 

patches at different scales to extract features. The learned 

features were used to construct an output feature vector, 

which was then classified using either a SVM with radial 

basis function (RBF) filter or RF classifier into benign or 

malignant. 

 

Their method classified nodules with 86% accuracy and 

they also found that it was robust against different levels 

of noise inputs. Li et al. used 3-dimensional CNNs to 

interpolate missing imaging data between MRI and PET 

images. 

830 patients with MRI and PET scans from the 

Alzheimer Disease Neuroimaging Initiative (ADNI) 

database were studied. 3-D CNNs were trained with 

MRI and PET images as input and output respectively, 

and used to reconstruct PET images from patients who 

did not have them. Their reconstructed PET images 

almost matched ground truth results of disease 

classification, but one caveat is that issues of overfitting 

were not addressed, limiting the potential 

generalizability of their technique. Hosseini-Asl et al. 

achieved state of the art results in diagnosing patients 

with Alzheimer's Disease versus normal, with an 

accuracy of 99%. They employed 3-D CNNs in an 

autoencoder architecture, pretrained on the 

CADDementia dataset to learn generic brain structural 

features. The learned feature outputs were then 

connected to higher layers where deep supervision 

techniques fine-tuned the algorithm's ability to 

discriminate between scans of patients with normal 

brains, mild cognitive impairment, or Alzheimer's 

Disease from the ADNI database. Korolev et al. 

evaluated the performance of their VOXCNN and 

ResNet, which was based on the VGGNet and Residual 

neural network architectures respectively. They also 

used the ADNI database to discriminate between normal 
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and Alzheimer Disease patients. Although their accuracy 

of 79% for Voxnet and 80% for ResNet was lower than 

what Hosseini-Asl achieved, Korolev states that their 

algorithms did not need hand-crafting of features and 

were simpler to implement. Diabetic retinopathy (DR) 

can also be diagnosed using CNNs. Using digital 

photographs of the fundus of the eye, Pratt et al. trained 

a CNN with 10 convolutional layers and 3 fully 

connected layers on approximately 90,000 fundus 

images. They classified DR into 5 clinically used 

classifications of DR severity, with 75% accuracy. 

Abramoff et al. evaluated a commercial device, the 

IDx-DR version X2.1 (IDx LLC, Iowa City, Iowa, USA) to 

detect DR. The author does not disclose the CNN 

architectures but states they are inspired by Alexnet and 

VGGNet. The device, trained on up to 1.2 million DR 

images, obtained an AUC score of 0.98. Unsupervised 

learning methods are also an active area of research. Plis 

et al. used Deep Belief Networks to extract features from 

functional fMRI (fMRI) images, and MRI scans of 

patients with Huntington Disease and Schizophrenia. 

Suk et al. classified fMRI images into diagnoses of 

Healthy or Mild Cognitive Impairment, using a stacked 

architecture of RBMs to learn hierarchal functional 

relationships between different brain regions. Looking 

outside the usual CNN models, Kumar et al. compared 

the performance of the well-known CNNs Alexnet and 

VGGNet to other techniques, namely Bag of Visual 

Words (BOVV) and Local Binary Patterns (LBP). 

Interestingly, the BOVV technique performed the best at 

classifying histopathological images into 20 different 

tissue types. 

 

3.2   LOCALIZATION 

Localization of normal anatomy is less likely to interest 

the practicing clinician although applications may arise 

in anatomy education. Alternatively, localization may 

find use in fully automated end-to-end applications, 

whereby the radiological image is autonomously 

analyzed and reported without any human intervention. 

Yan et al. looked at transverse CT image slices and 

constructed a two stage CNN where the first stage 

identified local patches, and the second stage 

discriminated the local patches by various body organs, 

achieving better results than a standard CNN. Roth et al. 

trained a CNN with 5 convolution layers to discriminate 

approximately 4000 transverse axial CT images into one 

of 5 categories: neck, lung, liver, pelvis, legs. He was able 

to achieve a 5.9% classification error rate and an AUC 

score of 0.998, after data augmentation techniques. Shin 

et al. used stacked autoencoders on 78 contrast-enhanced 

MRI scans of the abdominal region containing liver or 

kidney metastatic tumors, to detect the locations of the 

liver, heart, kidney and spleen. Hierarchal features were 

learned over the spatial and temporal domains, giving 

detection accuracies of between 62% and 79%, 

depending on the organ. 

 

3.3  DETECTION 

Detection, sometimes known as Computer-Aided 

Detection (CADe) is a keen area of study as missing a 

lesion on a scan can have drastic consequences for both 

the patient and the clinician. The task for the Kaggle 

Data Science Bowl of 2017 involved the detection of 

cancerous lung nodules on CT lung scans. 

Approximately 2000 CT scans were released for the 

competition and the winner Fangzhou achieved a 

logarithmic loss score of 0.399. Their solution used a 3-D 

CNN inspired by U-Net architecture to isolate local 

patches first for nodule detection. Then this output was 

fed into a second stage consisting of 2 fully connected 

layers for classification of cancer probability. Shin et al. 

evaluated five well-known CNN architectures in 

detecting thoracoabdominal lymph nodes and 

Interstitial lung disease on CT scans. Detecting lymph 

nodes is important as they can be a marker of infection or 

cancer. They achieved a mediastinal lymph node 

detection AUC score of 0.95 with a sensitivity of 85% 

using GoogLeNet, which was state of the art. They also 

documented the benets of transfer learning, and the use 

of deep learning architectures of up to 22 layers, as 

opposed to fewer layers which was the norm in medical 

image analysis. Overfeat was a CNN pre-trained on 

natural images that won the ILSVRC 2013 localization 

task . Ciompi et al. applied Overfeat to 2-dimensional 

slices of CT lung scans oriented in the coronal, axial and 

sagittal planes, to predict the presence of nodules within 

and around lung pressures. They combined this 

approach with simple SVM and RF binary classifiers, as 

well as a Bag of Frequencies, a novel 3-dimensional 

descriptor of their own invention. 
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3.4  SEGMENTATION 

CT and MRI mage segmentation research covers a 

variety of organs such as liver, prostate and knee 

cartilage, but a large amount of work has focused on 

brain segmentation, including tumor segmentation. The 

latter is especially important in surgical planning to 

determine the exact boundaries of the tumor in order to 

direct surgical resection. Sacrificing too much of 

eloquent brain areas during surgery would cause 

neurological deficits such as limb weakness, numbness 

and cognitive impairment. Traditionally, medical 

anatomical segmentation was done by hand, with a 

clinician drawing out- lines slice by slice through an 

entire MRI or CT volume stack, therefore it is ideal to 

implement a solution that automates this laborious task. 

An excellent review of brain MRI segmentation was 

written by Akkus et al., who reviewed various CNN 

architectures and metrics used in segmentation. 

Additionally, he also detailed the numerous 

competitions and their datasets, such as Brain Tumor 

Segmentation (BRATS), Mild traumatic brain injury 

outcome prediction (MTOP) and Ischemic Stroke Lesion 

Segmentation (ISLES). Moeskops et al. used 3 CNNs, 

each with a different 2-dimensional input patch size, 

running in parallel to classify and segment MRI brain 

images of 22 pre-term infants and 35 adults into different 

tissue classes such as white matter, grey matter and 

cerebrospinal fluid. The advantage of using 3 different 

input patch sizes is that each focuses on capturing 

different aspects of the image, with the smallest patch 

focused on local textures while the larger patch sizes 

assimilated spatial features. Overall, the algorithm 

achieved good accuracy, 

 

3.5  REGISTRATION 

Although the registration of medical images has many 

potential applications, which were reviewed by 

El-Gamal et al.  their actual clinical use is encountered in 

niche areas. Image registration is employed in 

neurosurgery or spinal surgery, to localize a tumor or 

spinal bony landmark, in order to facilitate surgical 

tumor removal or spinal screw implant placement. A 

reference image is aligned to a second image, called a 

sense image and various similarity measures and 

reference points are calculated to align the images, which 

can be 2 or 3-dimensional. The reference image may be. a 

pre-operative MRI brain scan and the sense image may 

be an intraoperative MRI brain scan done after a 

first-pass resection, to determine if there is remnant 

tumor and if further resection is required. Using MRI 

brain scans from the OASIS dataset, Yang et al. stacked 

convolution layers in an encoder-decoder fashion, to 

predict how an input pixel would morph into its final 

configuration. They invoked the use of a large 

deformation diffeomorphic metric mapping (LDDMM) 

registration model and achieved dramatic improvements 

in computational time. Miao et al. trained a 5-layer CNN 

on synthetic X-ray images in order to register 

3-dimensional models of a knee implant, a hand implant, 

and a trans-esophageal probe onto 2-dimensional X-ray 

images, in order to estimate their pose. Their method 

obtained successful registrations 79-99% of the time, and 

took 0.1 seconds, a significant improvement over 

traditional intensity-based registration method. 

 

4. EVALUATION 

4.0. Comparison with other Methods 

Segmentation performance metrics of our method (see 

Table1) are in the range of the wining proposals in the 

well-known brain tumor image segmentation challenge 

BRATS. This benchmark uses glioma tumor images and 

supplies a dataset with four modalities of MRI (T1, T2, 

T1-CE, and FLAIR). The 2013 top-ten ranking of the 

participating methods obtained glioma Dice index 

values between 0.69 and 0.82 for the segmentation of the 

complete tumor. The Dice index value obtained by our 

method for glioma segmentation is 0.779, which is close 

to the highest achieved value, even with the 

inconveniences associated with working with a single 

MRI modality and classifying among three different 

kinds of tumors. A more appropriate comparison of our 

results is with those results obtained by previous works 

using the same T1-CE MRI image dataset. Table4shows 

the tumor classification accuracy of our approach, 

together with seven published methods: two 

feature-driven approaches and five deep learning 

approaches. Our method outperforms the other 

proposals with a tumor classification accuracy of 0.973. 
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Table 1. Comparison of the proposed approach with 

other approaches over the same T1-CE MRI 

image dataset. 

 
 

4.3.1. Evaluation of tumor classification 

The classification function, depends on the confidence 

threshold parameter below fig. shows the relationship 

between the confidence threshold and the resulting 

precision. A slow descent can be observed up to a 

confidence threshold of 0.88 followed by a sharp decline. 

There is no strong restriction on the selection of the 

confidence threshold and, in order to obtain a 

classification with a precision level higher than 0.9, it 

could be the behavior could be predicted observing the 

pttas index histogram. Peak values in the histogram can 

be found once a pttas value of 0.88 is reached. The 

number of images with a pttas index value between 0.4 

and 0.88 is very low, so when the confidence threshold is 

raised from 0.4 to 0.88, the precision will only be 

marginally lower as can be observed in the graph in 

Figure5. Due to the fact that all the processed images 

with a pttas index value greater than 0.4 are correctly 

labeled, if we were to choose a confidence threshold 

equal or lower than 0.4, the precision would be close to 

100% (all samples would be correctly labeled, except 

those with a value close to zero). This is why the 

confidence threshold diagram begins with accuracy ~1 (= 

0.994). 

 

Figure 5. Graph of the relation between the confidence 

threshold and the precision of the predicted tumor type. 

5. CONCLUSION 

In this paper, we present a fully automatic brain tumor 

segmentation and classification method, based on a 

CNN architecture designed for multiscale processing. 

We evaluated its performance using a publicly available 

T1-weighted contrast-enhanced MRI images dataset. 

Data augmentation through elastic transformation was 

adopted to increase the training dataset and prevent 

overfitting. The measures of performance obtained are in 

the range of the top ten methods from the BRATS 2013 

benchmark. We compared our results with other seven 

brain tumor classification approaches that used the same 

dataset. Our method obtained the highest tumor 

classification accuracy with a value of 0.973. Our 

multiscale CNN approach, which uses three processing 

pathways, is able to successfully segment and classify 

the three kinds of brain tumors in the dataset: 

meningioma, glioma, and pituitary tumor. In spite of the 

fact that skull and vertebral column parts are not 

removed and the variability of the three tumor types, 

which caused false positives in some images, our 

approach achieved outstanding segmentation 

performance metrics, with an average Dice index of 

0.828, an average Sensitivity of 0.940, and an average 

pttas value of 0.967. Our method can be used to assist 

medical doctors in the diagnostics of brain tumors and 

the proposed segmentation and classification method 

can be applied to other medical imaging problems. As 

future work, we plan to develop an FCN architecture for 

the classification of the same MRI images dataset and 

compare its performance with the proposed model. 

Moreover, we plan to study the applicability of the 

proposed multiscale convolutional neural network for 

segmentation in other research fields such as satellite 

imagery. 
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