

221 International Journal for Modern Trends in Science and Technology

As per UGC guidelines an electronic bar code is provided to seure your paper

International Journal for Modern Trends in Science and Technology, 9(02): 221-226, 2023
Copyright © 2023 International Journal for Modern Trends in Science and Technology

ISSN: 2455-3778 online

DOI: https://doi.org/10.46501/IJMTST0902040
Available online at: http://www.ijmtst.com/vol9issue02.html

Design of Generic Mesochronous FIFO using DPRAM

Ch. Sree Harshitha1 | B.Lakshmi2

1PG Scholar, Department of Electronics and Communication Engineering, GVPCEW, Visakhapatnam.

2Assistant Professor, Department of Electronics and Communication Engineering, GVPCEW, Visakhapatnam.

To Cite this Article

Ch. Sree Harshitha and B.Lakshmi. Design of Generic Mesochronous FIFO using DPRAM. International Journal for

Modern Trends in Science and Technology 2023, 9(02), pp. 221-226. https://doi.org/10.46501/IJMTST0902040

Article Info

Received: 18 January 2023; Accepted: 23 February 2023; Published: 26 February 2023.

FIFO which stands for First in First Out which means whatever data is written first is read first. when the clock domains of

write and read are of same frequencies then there is control on the data flow so, there is no loss of data. But when the write and

read frequencies are different there is no control on the data flow due to this there is loss of data. But in the reality, it is difficult

to match the read and write frequencies. so, in order to avoid the loss of data when different frequencies used for write and read,

implement a FIFO between the two clock domains of write and read. This project is an implementation of First in first out

algorithm which overcomes clock domain crossing. Designed module is tested against synchronous clock domains, mesochronous

clock domains and proposed mesochronous clock domains. The parameters observed here are memory(461780KBytes),

frequency(686.86MHZ) and delay(1.456ns). The delay is reduced by 82% when compared with mesochronous dual-clock FIFO.

KEYWORDS: - FIFO, Clock Domain, mesochronous FIFO.

1. LITERATURE REVIEW

A FIFO is a special type of buffer. The name FIFO

stands for first in first out and means that the data

written into the buffer first comes out of it first. There

are other kinds of buffers like the LIFO (last in first out),

often called a stack memory, and the shared memory.

The choice of a buffer architecture depends on the

application to be solved.

 FIFOs can be implemented with software or

hardware. The choice between a software and a

hardware solution depends on the application and the

features desired. When requirements change, a software

FIFO easily can be adapted to them by modifying its

program, while a hardware FIFO may demand a new

board layout. Software is more flexible than hardware.

The advantage of the hardware FIFOs shows in their

speed.

 Clocks having two different frequencies is called

clock domain. Transferring data between two different

clock domains is called clock domain crossing. Due to

this there is a loss of data. In order to prevent that need to

design FIFO between the two different clock frequency

domains. FIFO stands for First in First Out is an interface

between two clock domains. This will prevent the loss of

data as it provides memory to store the data.

 fw -- write clock frequency, fr -- read clock frequency.

ABSTRACT

https://doi.org/10.46501/IJMTST0902040
http://www.ijmtst.com/vol9issue02.html
https://doi.org/10.46501/IJMTST0902040
https://doi.org/10.46501/IJMTST0902040
http://www.ijmtst.com/vol9issue02.html

222 International Journal for Modern Trends in Science and Technology

So, if fr = fw then they are said to be synchronous and

there will be no loss of data. But if fr < fw then they are

not synchronized and there will be loss of data and also

if fr > fw then also there will be loss of data but we get

garbage data. In order get the synchronized data flow

between two different clock domains then FIFO should

be placed between them. The design of FIFO is done

based on the FIFO_DEPTH so that it will store the data

that is lost.

2. SYSNCHRONOUS FIFO

 Synchronous FIFO is a first in first out queue in

which there is a single clock pulse for both data write

and read. In synchronous FIFO the read and write

operations are performed at the same rate. The signals

wt_en, wt_addr and wt_clk are used to write the data

into the memory with respect to the write reset. The

signals rd_en, rd_addr and rd_clk are used to read the

data from the memory with respect to the read reset.

The observation from the output is that there is no

loss of data as both write and read frequencies are

same and the phases of both the clock signals are

same.

 As, the write and read clocks are of same

frequency the read has to wait till the completion of

write operation. so, there may be a chance for the

occurrence of delay. So, to reduce that is go for

Mesochronous FIFO.

3. MESOCHRONOUS FIFO

 In Mesochronous FIFO there is a single clock pulse

for both data write and read but there are different in

phases. The read and write operations are not

performed at the same rate. The signals wt_en, wt_addr

and wt_clk are used to write the data into the memory

with respect to the write reset. The signals rd_en,

rd_addr and rd_clk are used to read the data from the

memory with respect to the read reset.

223 International Journal for Modern Trends in Science and Technology

From the output it is observed that there is no loss of

data as both write and read frequencies are same. But,

the phases of both the clock signals are different. And

the delay obtained here is less compared to the

synchronous FIFO. As, the write and read of having

different phases the read operation can be done without

waiting for the completion of the write operation by this

the delay is reduced. The delay is further reduced with

the Proposed Mesochronous FIFO.

4. PROPOSED MESOCHRONOUS FIFO

 An Mesochronous FIFO refers to a FIFO where the

data value is written to the FIFO at a different rate and

data values are read from the same FIFO at a different

rate, both at the same time. The reason for calling it

Mesochronous FIFO, is that the read and write clocks

are not synchronized.

 The basic need for a Mesochronous FIFO arises

when we are dealing with systems with different data

rates. For the rate of data flow being different, we will

be needing Mesochronous FIFO to synchronize the data

flow between the systems. The main work of an

Mesochronous FIFO is to pass data from one clock

domain to another clock domain.

 The architecture consists two paths, namely data

path and control path. Data Path through which the

data the data is passed and processed. Control path it

controls the data path.

a) DATA PATH:

 The data path is in which the data is passed with

respect to the control signals write enable, write clock,

read enable, and read clock generated by the control

path based the signals from the status flag. The data is

written into the DPRAM based on the address

generated by the write address generator and read

address generator. The data path contains 4 blocks.

They are:

1. DPRAM Block

2. Write Address Generation Block

3. Read Address Generation Block

4. Status Flag Block

1. DPRAM:

 This stands for Dual Port Random Access Memory.

The ports that are included are: Write Port, Read Port.

The data is written into the memory with Wt_en(write

enable), Wt_clk(write clock) for the give

Wt_address(write address). The data is read from the

memory with the help of Rd_en(read enable), Rd_clk

(read clock) from the given Rd-address. The port refers

to where the transaction of data should take place. Write

port refers the transaction of data is write that is data is

written into the DPRAM with respect to the write

address which specifies in what location the data should

be written. The read port refers to the transaction od

data is to read that is data is read from the particular

location of DPRAM with respect to the read address

which specifies from what location the data should be

read.

2. Read Address Generation:

 In this Read address generation block the Read

address is generated with the Rd_en (Read enable) and

Rd_clk(Read clock). The active low reset which resets

the Read address generation block. The address

generated from this will determine from which location

the data should be read.

3. Write Address Generation:

 In this write address generation the write address

is generated with the Wt_en mean write enable and

Wt_clk mean write clock. The active low reset which

resets the write address generation block. The write

address generated by this will tell in which location the

data should be written.

224 International Journal for Modern Trends in Science and Technology

4. Status Flag:

 The input of status flag block is

Wt_add[add_width:0] and Rd_add[add_width:0]. It

will tell the status of Wt_add (Write address) and

Rd_add (Read address) that is full, empty, almost_full,

almost_empty, pop_on_empty_error,

push_on_full_error. Full condition when the msb of

write address and read address in different and all

others bits are equal then it is considered as full. When

the write address and read address are equal then the

condition is empty. When the write address meets the

threshold it will give the almost_full condition. When

the read address meets the threshold, it will give

almost_empty. When the FIFO is completely read when

you are trying to read the memory further then the

pop_on_empty_error will occur. When the FIFO is

completely filled when you are trying to write into the

memory further then the push_on_empty_error will

occur.

b) CONTROL PATH:

 It gets the inputs Wt_clk that is write clock and

data_in from clock domains –A and Rd_clk that is read

clock from clock domain - B. The outputs of status flag

that is full, empty, almost_full, almost-empty,

pop_on_empty_error, push_on_full_error is given as

input to the control path. It contains two active low

resets one from writing and another for reading. The

control path will generate the outputs Wt_en (write

enable) and Rd_en (read enable). When the write enable

is activated then data is written into the FIFO. When

read enable is activated then the data is read from the

FIFO. When full is generated from status flag then the

write enable will not active. When the empty is

generated then the write enable is activated which

allows to write into the memory and the read enable is

de-activated.

The waveform of the Mesochronous FIFO is shown

below:

5. COMPARISON OF RESULTS

 The comparison of results for the Synchronous

FIFO, Mesochronous FIFO and Proposed

Mesochronous FIFO are done. The parameters that

are compared are memory, frequency, power, phase

and delay. From the result, it is observed that

synchronous FIFO is having less memory and low

power consumption compared with others and as for

delay the proposed mesochronous FIFO is having

less.

225 International Journal for Modern Trends in Science and Technology

 And from this power plot, it is observed that the

synchronous FIFO is having less power consumption.

And from this plot, it is observed that proposed

mesochronous FIFO is having less delay when

compared with others.

And from this plot, it is observed that synchronous

FIFO is consuming less memory that the other two.

 From the result, it is observed that synchronous

FIFO is having less memory and low power

consumption compared with others and as for delay the

proposed mesochronous FIFO is having less.

5. CONCLUSION

In order to synchronize the data flow between the

systems with different clocks the Mesochronous FIFO is

used. By implementing the generic Mesochronous FIFO,

the loss of data can be avoided when different

frequencies and phases are used for write and read. In

this the implementation of synchronous, mesochronous

and Proposed Mesochronous can be done without any

loss of data. The delay is reduced to 1.456ns. The code is

implemented and verified in Verilog. The tool used is

Questa sim and the parameters observed here are

power, memory, frequency and delay.

Conflict of interest statement

Authors declare that they do not have any conflict of

interest.

REFERENCES

[1] The Mesochronous Dual-Clock FIFO Buffer, Dimitrios

Konstantinou, Anastasios Psarras, Chrysostomos

Nicopoulos, and Giorgos Dimitrakopoul, Jan. 2020. T.

Chelcea and S. M. Nowick, “Robust interfaces for

mixed-timing systems,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 12, no. 8, pp. 857–873, Aug. 2004.

[2] A. M. S. Abdelhadi and M. R. Greenstreet, “Interleaved

architectures for high- throughput synthesizable

synchronization FIFOs,” in Proc. 23rd IEEE Int. Symp.

Asynchronous Circuits Syst. (ASYNC), May 2017, pp.

41–48.

[3] P. Teehan, M. Greenstreet, and G. Lemieux, “A survey

and taxonomy of GALS design styles,” IEEE Des. Test

Comput., vol. 24, no. 5, pp. 418–428, Sep./Oct. 2007.

[4] J. Ax, N. Kucza, M. Vohrmann, T. Jungeblut, M.

Porrmann, and U. Rückert, “Comparing synchronous,

Figure 10: Comparison of Power

226 International Journal for Modern Trends in Science and Technology

mesochronous and asynchronous NoCs for GALS based

MPSoCs,” in Proc. IEEE MCSoC, Sep. 2017, pp. 45–51.

[5] J. Ax, N. Kucza, M. Vohrmann, T. Jungeblut, M.

Porrmann, and U. Rückert, “Comparing synchronous,

mesochronous and asynchronous NoCs for GALS based

MPSoCs,” in Proc. IEEE MCSoC, Sep. 2017, pp. 45–51.

[6] W. J. Dally and J. W. Poulton, Digital Systems

Engineering. Cambridge, U.K.: Cambridge Univ. Press,

2008.

[7] R. Ginosar, “Metastability and synchronizers: A tutorial,”

IEEE Des. Test Comput., vol. 28, no. 5, pp. 23–35,

Sep./Oct. 2011.

[8] R. W. Apperson, Z. Yu, M. J. Meeuwsen, T. Mohsenin,

and B. M. Baas, “A scalable dual-clock FIFO for data

transfers between arbitrary and haltable clock domains,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 15,

no. 10, pp. 1125–1134, Oct. 2007.

[9] D. Verbitsky, R. R. Dobkin, R. Ginosar, and S. Beer,

“StarSync: An extendable standard-cell mesochronous

synchronizer,” Integration, vol. 47, no. 2, pp. 250–260,

Mar. 2014.

[10] D. Ludovici, A. Strano, D. Bertozzi, L. Benini, and G. N.

Gaydadjiev, “Comparing tightly and loosely coupled

mesochronous synchronizers in a NoC switch

architecture,” in Proc. NOCS, May 2009, pp. 244–249.

[11] D. Ludovici, A. Stranoy, G. N. Gaydadjievx, L. Beniniyy,

and D. Bertozziy, “Design space exploration of a

mesochronous link for cost-effective and flexible GALS

NOCs,” in Proc. IEEE DATE, Mar. 2010, pp. 679–684.

[12] S. Saponara, F. Vitullo, R. Locatelli, P. Teninge, M.

Coppola, and L. Fanucci, “LIME: A low-latency and

low-complexity on-chip mesochronous link with

integrated flow control,” in Proc. 11th EUROMICRO

Conf. Digit. Syst. Design Archit., Methods Tool, Sep. 2008,

pp. 32–35.

[13] A. Edman and C. Svensson, “Timing closure through a

globally synchronous, timing partitioned design

methodology,” in Proc. 41st Design Autom. Conf., Jul.

2004.

[14] M. Ghoneima, Y. Ismail, M. Khellah, and V. De,

“Variation-tolerant and low-power source- synchronous

multicycle on-chip interconnect scheme,” VLSI Des., vol.

2007, Mar. 2007, Art. no. 95402.

[15] I. Loi, F. Angiolini, and L. Benini, “Developing

mesochronous synchronizers to enable 3D NoCs,” in

Proc. Design, Autom. Test Eur., Mar. 2008, pp. 1414–1419.

[16] F. Vitullo et al., “Low-complexity link microarchitecture

for mesochronous communication in networks-on-chip,”

IEEE Trans. Comput., vol. 57, no. 9, pp. 1196– 1201, Sep.

