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 Laplace transform is a very useful tool to solve the differential equation of higher order as well as very useful to solve integral 

equations. The mathematical modulation of most of the engineering problems such as the deflection of the beam, equation of 

motion, modeling of the mechanical system for Transfer Function, and vibrating system is in the terms of differential equations. 

The solution to such an equation can be found by different methods. In this paper, we used the Laplace Transform method to find 

solutions to the modulation of recent engineering problems with examples. 
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1. INTRODUCTION 

The L.T. is a significant field of Mathematical Analysis. 

It has broad applications in various fields of engineering 

technology, basic sciences, mathematics, and econom-ics. 

L.T. is the method applied to solve the differential 

equations at boundary-value. Mathematical formulations 

of most engineering problems are in the form of 

differ-ential equations. These equations can easily be 

solved by using Laplace transform.  

 In day-to-day life, mathematical applications and 

models are commonly used. In 2016, Daci [4] used LT in 

a Mathematical model on population projection in 

Albania and he experimentally verified how LT is used 

in population growth [4]. Some of the simple 

applications of LT in engineering fields related to the 

transfer function of mechanical systems, nuclear physics 

as well as Automation engineering, Control engineering, 

and Signal processing are discussed in by Sawant[9]. 

Laplace transform methods have a key role to play in the 

modern approach to the analysis and design of 

engineering systems. Patil [1] showed how to present 

discounted value in finance related to Laplace 

transforms.  

 Das [3] presented the applications of LT in control 

systems using Finite Laplace transform (see. [2]). Laplace 

transform is also used in the theory of Partial fraction 
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(see Thakur et al [5]). Laplace transforms theory is 

related to other transforms also (see. Rani and Devi [6], 

Anumaka [8],  Aleksandar [13] ). Many authors namely 

Ananda and Gangadharaiah[9],  Artem [10], Duz,   [14],  

Sedletskii [11], Stankovi[12], Ramamna [16], Parashar 

and ELzaki [18], Chandramouli[19], Bhullar [15], 

Subramanian [20] done work on applications of Laplace 

transform in different fields. Also, see [21-23]. 

In this article, we will see the applications of LT for 

finding the solution of the equation of motion for a 

forced elastic string with damping and without 

damping, the equation for motion with two masses with 

one and three springs, in deflection of beam and 

modeling of the mechanical system. Before going to see 

applications we first present some definitions. 

 

1.1 Definition: 

Let f(t) be a function of t defined for all t >0. Then the 

Laplace Transform of f(t), denoted by L[f(t)], is defined 

by   




 

0

)()()]([ sFdttfetfL st  

Where s is a parameter, which may be real of the 

complex. The symbol L is the Laplace transform 

operator. L [f(t)] defines a function of s and is denoted by 

F(s). 

 

1.2 Definition: 

If the Laplace transform of f(t) is F(s). i.e. L[f(t)]=F(s), then 

f(t) is called the inverse Laplace transform of F(s) and we 

write )()]([1 tfsFL  . 

II. APPLICATIONS OF LAPLACE TRANSFORM IN 

THE EQUATION 

 In this section, we shall now see the applications of 

Laplace Transforms to solve the equation of motion.  

 

2.1 Forced oscillation without damping (Example): 

 Let mass m be loaded to the bottom end side of an 

elastic spring whose top side is fixed and whose stiffness 

is k, when the driving force is 𝐅𝟎𝐬𝐢𝐧𝐚𝐭 (see Fig. 1).  This 

example comes under the forced oscillation without 

damping. Taking the external periodic force to be 𝐅𝟎𝐬𝐢𝐧𝐚𝐭 

the equation of motion is 

 

2

02
( ) sin

d x
m mg k e x F at

dt
   

   (2.1.1) 

 

Where x is the length of the stretched position of the 

spring (displacement ) after the time t, k is the restoring 

force per unit stretch of the spring due to the elasticity,  e 

is the elongation produced in the spring by mass m, a is 

arbitrary constant and p is any scalar.  We solve this 

equation by using LT  when a2 ≠ k/m and velocity and 

displacement are zero when t=0. In this particular 

example, mg=ke, from equation (2.1.1) 

2
0

2

sinF atd x k
x

m mdt
 

      or  

2
2 0

2

sinF atd x
n x

mdt
 

,   where 

2 k
n

m


 

Taking LT on both sides we get, 

2 2 0

2 2
( ) (0) '(0) ( )

F a
s X s sx x n X s

m s a

    
    
Using x(0)=0, x’(0)=0 we get   

 2 2 0

2 2
( )

F a
s n X s

m s a

 
   

   

i.e.   
  

0

2 2 2 2

1
( )

aF
X s

m s n s a


 
 

Now by partial fraction  

   2 2 2 22 2 2 2

1 As B Cs D

s n s as n s a

 
 

  
 

i.e.   
3 2 2 2 2 21 ( ) ( ) ( ) ( )s A C s C D s n A a C n B a D         

Solving  𝐀 = 𝟎, 𝐁 =
𝟏

𝐧𝟐−𝐚𝟐 , 𝐂 = 𝟎 , 𝐃 = −
𝟏

𝐧𝟐−𝐚𝟐 

and hence  

 
Applying Inverse LT we get,   

 

Where,  

 
Fig. 1 
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2.2 Forced oscillation (Example): 

The forced oscillations of an elastic spring whose one end 

is fixed and the other end is hung a mass m (see fig. 2) is 

governed by the differential equation 

2

02
sin

d y
m ky F pt

dt
  , 

Where k is spring constant and 0F sinpt is the driving 

force. Initially, if the mass is at rest in its equilibrium 

position then we have y 0 = 0, y′ 0 = 0.  Apply the LT 

of the governing equation we get, 

2 2
0 2 2

( ) ( )
p

s Y s w Y s kF
s p

 


,     

Where 0/  and k=F /w k m m
.  

Hence, 
2 2 2 2

( )
( )( )

kp
Y s

s w s p


  . 

If
2 w p

 the Inverse LT gives  

2 2

1 1
( ) sin sin

kp
y t wt pt

w pp w

 
  

   .   

This case correspondence to no resonance 

If
2w p

the inverse Laplace transform gives 

 
2

( ) sin sin
2

k
y t wt w wt

w
 

. 

This correspondence to resonance. 

 
Fig. 2 

2.3 Example  

The 2 masses m and M free to move in a straight line are 

joined by a spring of stiffness λ. At 𝐭 = 𝟎 when they are 

both rest and the spring unstrained, a blow of impulse p 

is given to M in the way towards m. Now we obtain the 

motion of m and M. Let “a” denotes the natural length of 

the spring and x and y are the displacements of M and m 

at any time t from their original position at 𝐭 = 𝟎. Then 

by Hook’s law, the compression in the spring shown in 

figure 3 is given by 

𝑇 = 𝜆(𝑥 − 𝑦) 

 

 
Fig. 3 

 

The equation of motion for M and m are 

2

2
( )

d x
M p t T

dt
 

     or      

2

2
( ) ( )

d x
M x y p t

dt
   

 

and 

2

2

d y
m T

dt


                   or    

2

2
( ) 0

d y
m y x

dt
  

 

Initial conditions are 𝐱 = 𝐲 = 𝐱′ = 𝐲′ = 𝟎 at 𝐭 = 𝟎. Taking 

LT we get 

2( ) ( ) ( )Ms X s Y s p            (2.3.1) 

and 
2( ) ( ) ( ) 0ms Y s X s                            (2.3.2) 

Multiply equation (2.3.1) by 
2( )ms  and equation 

(2.3.2) by   and adding we get 

 2 2 2 2( )( ) ( ) ( )Ms ms X s p ms       
 

 i.e.         
 

2

2 2 1 1

( )
( )

( )

ms p
X s

mMs s m M



  




 
      (2.3.3) 

Or 

1

2 2 1 1

1
( )

( )

p mM
X s

M m s s m M



 

  
  

     and 

sin
p m

x t pt
M m Mp

 
  

    , where
2 1 1p ( )m M    . 

 Now from result (2.3.1) and (2.3.2)  

 2 2 1 1
( )

( )

p
Y s

mMs s m M



  


 
 

1 1 2 2 1 1

1 1

( ) ( )

p

Mm m M s s m M   

  
  

      

By inverse LT we get  

 

We now consider another example of mechanics; two 

masses are connected to three springs. 

 

2.4 Two Masses Three springs (Example)  

Let’s consider three spring and two masses. Here all the 

three springs have same spring constant k. The 

mechanical system as shown in figure 4 is governed by 

the differential equations.  

1
( ) sin  

p
y t t pt

M m p

 
  

  
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2
1

1 2 1( )
d y

ky k y y
dt

      and     

2
2

2 1 22
( )

d y
k y y ky

dt
    ,  

Where k is spring modulus of each of the springs, y1 and 

y2  are the displacements of the masses from their 

position of elastic equilibrium.  

Assuming the masses of the springs and the damping are 

neglected. Let the initial conditions are 

   1 2 0 0,  0 1, y y  𝑦1
′ 0 =  3𝑘, 𝑦2

′  0 = − 3𝑘 

 

 

Fig. 4 

 

Taking Laplace Transform of above both equations we 

get 

 2
1 1 2 1( ) 3 ( ) ( ) ( )s Y s s k kY s k Y s Y s       

and  2
2 2 1 2( ) 3 ( ) ( ) ( )s Y s s k k Y s Y s kY s       

Elimination yields 
2

1 2 2 2

( 3 )( 2 ) ( 3 )
( )

( 2 )

s k s k k s k
Y s

s k k

   


 
 

and 
2

2 2 2 2

( 3 )( 2 ) ( 3 )
( )

( 2 )

s k s k k s k
Y s

s k k

   


 
 

Breaking into partial fractions we have 

1 2 2

3
( )

3

s k
Y s

s k s k
 

 
 

and 2 2 2

3
( )

3

s k
Y s

s k s k
 

 
. 

Hence taking inverse Laplace transform the solution is 

obtained as  

1( ) cos  sin 3  y t k t k t   

and  2( ) cos  sin 3  y t k t k t  . 

3. LAPLACE TRANSFORM IN DEFLECTION OF 

BEAM 

Suppose a beam is kept along horizontal x-axis and its 

one end is kept at x=0 and other at x=L. Suppose the 

beam suffers a transverse deflection y(x) which is 

produced by applying a vertical load w(x) per unit 

length, the deflection is given by 

4

4

( )d y w x

EIdx
 , 0 < x < 𝐿, 

Where E is the Young’s modulus of elasticity for the 

beam, I is the M.I. of the beam about x axis in a cross 

section. The boundary conditions are:  

1) If beam is longed or has a simply supported ends 

then y = y′′ = 0 

2) If the beam is clamped or has a fixed ends then 

y = y′ = 0 

3) If beam has a free ends then y′′ = y′′′ = 0 

 

3.1 Example  

A beam of length L is clamped horizontally at both ends 

and loaded at x=L/4 by weight w then to find the 

equation for deflection y of the beam at any point and 

maximum deflection, consider the equation of the 

deflection:  

4

4 4

d y L
EI w x

dx

 

  
   .  

The boundary conditions are 𝐲 =
𝐝𝐲

𝐝𝐱
= 𝟎 𝐚𝐭 𝐱 = 𝟎 𝐚𝐧𝐝 𝐱 =

𝐋. Taking Laplace transform on both sides we get  

4 /4
2 3( ) LSw

s Y s e sy y
EI

  
. 

Since𝐲𝟎 = 𝐲𝟏 = 𝟎, Taking Inverse LT we get 

3
2 3

2 3
1 1 1

6 4 4 2 6

w L L
y x u x y x y x

EI

   
       

     
For 𝐱 > 𝐿/4 ,  

we have  

3
2 3

2 3
1 1 1

6 4 2 6

w L
y x y x y x

EI

 
    

   

and  

2
2

2 3
1 1

'
2 4 2

w L
y x y x y x

EI

 
    

   

Puttin 𝐲 = 𝐲′ = 𝟎 𝐚𝐭 𝐱 = 𝐋 𝐰𝐞 𝐠𝐞𝐭,  

3
2 3

2 3
1 3 1 1

6 4 2 6

w L
y y L y L

EI

 
   

   

and  

2
2

2 3
1 3 1

'
2 4 2

w L
y y L y L

EI

 
   

   

This gives  
2

9

64

w
y L

EI


 and 
3

27

32

w
y

EI


.  

Therefore,  

3
2 3

2 3
1 1 1

6 4 4 2 6

w L L
y x u x y x y x

EI

   
       

     

At the point of maximum deflection 𝐲′ must be zero.  
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Now for 𝐱 < 𝐿/4,    

2
2 3

1 9
' ( 3 )

2 64

w
y y x y x x L x

EI
   

.   

So 𝒚′ is never zero for  𝟎 < 𝐱 < 𝐿/4.  

For 
𝐋

𝟒
< 𝒙 < 𝐿, 𝐲′ is given by 

2
2

2 3
1 1

'
2 4 2

w L
y x y x y x

EI

 
    

   
Equation to zero we get  

2
21 9 27

0
2 4 64 64

w L w
x Lx x

EI EI

 
    

   
2 25 7 2 0x Lx L    (5 2 )( ) 0x L x L     

 

So maximum deflection occurs at 𝐱 = 𝟐𝐋/𝟓 and its value 

is   

3 2 3
11 2 9 2 9 2

( )
2 5 4 128 5 64 5

L L L L
w L EI 
      

          
         

3
3 19 9 9 63

( )
1000 80 1000 8000

wL
wL EI

EI

 
    

   
 

3.2 Example 

A beam of stiffness EI is simply supported at its 

end 𝐱 = 𝟎  𝐚𝐧𝐝 𝐱 = 𝐋. It carries a uniform load w per unit 

length from 𝐱 = 𝐋/𝟒 to𝐱 = 𝟑𝐋/𝟒 . To find deflection at 

any point consider the equation of the deflection:  

4

4
( )

d y
EI w x

dx


, Where w(x) is load per unit length. 

In this case:       

 
3

.
4 4

L L
w x w u x u x

    
       

      

The boundary conditions are y = 0, and y′′ = 0 at x =

0 and x = L. Taking LT on both sides we have, 

 4 /4 3 /4 2
1 3( ) /LS Lsw

s Y s e e s s y y
EI

    
 

i.e. 

/4 3 /4
31

5 5 2 4
( )

LS Ls yyw e e
Y s

EI s s s s

  
    

 
   

Now taking inverse LT on both sides we get 

4 4
3

1 3
1 3 3 1

( )
24 4 4 4 4 6

w L L L L
y x x u x x u x y x y x

EI

         
               

           

For 𝐱 > 3𝐋/𝟒 we have   

4 4
3

1 3
1 3 1

( )
24 4 4 6

w L L
y x x x y x y x

EI

     
         

       

and    

2 2

3
1 3

'( )
2 4 4

w L L
y x x x y x

EI

     
        

       

Putting boundary conditions  

4 4
3

1 3
1 3 1

0
24 4 4 6

w L L
y L y L

EI

     
       

       

and 

2 2

3
1 3

0
2 4 4

w L L
y L

EI

     
      

       

Therefore, 3 / (4 )y wL EI  and  

3
1 (11/ 384)4 / ( )y wL EI Putting these values in  

4 4
3

1 3
1 3 3 1

( )
24 4 4 4 4 6

w L L L L
y x x u x x u x y x y x

EI

         
               

         

We get deflection at any point. 

 

3.3 Example 

When the loading is non-uniform, the use of LT methods 

has a distinct advantage, since by making use of 

Heaviside unit functions and impulse functions. Figure 5 

illustrates a uniform beam of length l, freely supported at 

both ends, bending under uniformly distributed weight 

W. 

Our aim is to determine the transverse deflection y(x) of 

the beam. From the elementary theory of beams, we have 

4 2

4 2
( )

d y d y
EI P W x

dx dx
 

            (3.3.1) 

Where W(x) is the transverse force per unit length, by 

means of a downwards force taken to be positive, and EI 

is the flexural rigidity of the beam (E is Young’s modulus 

of elasticity and I is the moment of inertia of the beam 

about its central axis). It is supposed that the beam has 

uniform elastic property and a uniform cross-section 

over its length, so that both E and I are taken to be 

constants. Using the Heaviside step and the Dirac delta 

function the force W(x) can be expressed as  

     1 ( ) [ ]W x w u x a W x b    
      (3.1.2) 

 Hence, from (3.1.1) and (3.1.2) we have   

   
4 2

4 2
1 ( ) [ ]

d y d y
EI P w u x a W x b

dx dx
     

 

 Where  

2  ,  , 
P w W

a w W
EI EI EI

  
 

 
Fig. 5 
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Since the left end is a hinge support and the right end is a 

sliding support and the boundary conditions are: 

At  x = 0,  deflection is zero, 𝑦(0) = 0 , and  bending 

moments is zero , 𝑦′′(0) = 0 

At x = L, slope is zero, 𝑦′(𝐿) = 0 and share force is zero, 

𝑦′′(𝐿) = 0. Applying Laplace transform  

 
Incorporating properties and Laplace transform of 

impulse and step function, we get 

 
Taking Inverse LT and making uses of second shift 

theorem we get  

𝑦 𝑥 =
𝑦′ 0 

𝑎
sin 𝑎𝑡 +  𝑦′′ 0 + 𝑎2𝑦′ 0  

1

𝑎2
 𝑡 −

sin 𝑎𝑡

𝑎
  

+𝑊  
𝑡 − 𝑏

𝑎2
−

1

𝑎2
sin 𝑎 𝑡 − 𝑏  𝑢 𝑡 − 𝑏  

+𝑤  
1

2𝑎2
 𝑎2𝑡2 + 2 cos 𝑎𝑡 − 1   

+  
1

2𝑎4
 𝑎2(𝑡 − 1)2

+ 2 cos 𝑎(𝑡 − 𝑎) − 1    

To find undetermined constants 𝑦′(0)  and 𝑦′′(0)  we 

employ the unused boundary conditions at x = L , 

namely , 𝑦′(𝐿) = 0 and y′′(L) = 0. 

 

4. ANALYSIS AND MODELING OF MECHANICAL 

SYSTEM 

Laplace Transform in Transfer Function: 

For calculating the transfer function of that certain 

system. Let’s consider a big Pot as shown in figure 6. 

Initially the pot is empty at t = 0.  Let iF  be the constant 

rate of flow added for t  0 and 0F BH be the rate at 

which flow leaves the tank. Let A be the cross sectional 

area of the tank. Now we determine the differential 

equation for the head H, identify the time constant and 

we find the transfer function of system by Laplace 

transform.  

We know that  0 F BH        (4.1.1) 

Let’s consider the fluid of mass m and fluid density σ. 

Since Mass is product of velocity and density.   

Hence Mass = Velocity × density  

i.e.  M V HA      

Now mass flow rate is given by  

dM dH
M A

dt dt
 

  and 

{Mass flow rate into tank} = {the mass flow rate} – {the 

mass out flow rate} 

0i
dH

A F F
dt

   
 , which gives,  

0i
dH

A F F
dt

 
. 

Hence ,  
i

dH
F A BH

dt
 

.  

This is differential equation for heat flow and its solution 

is easily obtained using Laplace Transform method. 

Taking Laplace transform on both sides we get 

 ( )i s s
dH

L F A L B L H
dt

 
  

   or

    ( ) (0)i s sF s A H s H B H s  
 

    ( )i s sF s A H s B H s 
, 

 H 0  0
 

 

This can be written as,  

 

 

1

i s s

H s

F s A B



              (4.1.2) 

Now taking LT of equation (4.1.1) we get 

0( ) ( )sF s B H s            (4.1.3) 

 

From (4.1.2) and (4.1.3) we get

 

 
0 1

1
i s

s

F s

F s A
s

B


 

  
    and 

this is equation of transfer function of the system, where 

the time constant is given by

s

s

A

B
 

. 

 

Fig. 6 

 

Laplace Transform in Vibrating Mechanical System 

Let’s consider the vehicle of mass m. The important 

elements in the investigating the suspension system of 

vehicle are the mass of the vehicle, the springs and 

damper which are used to connect to the body of the 

vehicle to the suspension links. Mechanical translational 

systems involve three basic elements: mass (M kg), 

springs (having spring stiffness K, measured in Nm−1) 

   
4 2

2

4 2
1 ( )

d y d y
L a L wL u x a WL x b

dx dx


   
        

   

 
     

     

2

2 2 2 2 2 2 2 2 3 2 2

''' 0 0 ' 0 1
[ ]

bx axy y a y e e
L y x W w

s a s s a s s a s s a

  
   

   
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and dampers (having damping coefficient D, measured 

inNsm-1. The associated variables are:  

1)  Displacement y(t) which is measured in m 

 2) Force F(t) (measured in N). 

 

Figure 7 shows the Mass–spring–damper system. By 

Newton’s and Hooke’s law, we can develop 

mathematical model for Mass–spring–damper system. 

The represented system shown in side figure is governed 

by the differential equation  

2

2
( )

d y dy
D Ky F t

dtdt
  

 

or      

2

2
2 5 2

d y dy
y sinwt

dtdt
  

        (4.2.1) 

Taking Laplace transforms throughout in (4.2.1), we get 

2

2
2 5 ( ) 2 ( )

d dy
L L L x L sinw

t

y
t

ddt

   
     

     
 

i.e. 
       2

2 2

2
( 2 5) [ 0 ' 0 6 0 ]

w
s s L y t sy y y

s w
      

  

 

Fig. 7 

 

Taking initial conditions (0) '(0) 0y y  we can write 

 
 2 2 2

2
( )

( 2 5)

w
Y s L y t

s s s w
   

  
 

On resolving into partial fractions for different values of 

w (say w = 2) we get  

    22 2 2
( )

( 2 5)( 2 5) 1 1

2 As B Cs D
Y s

s ss s s s

 
  

    
 

On Taking inverse Laplace transforms  

 
3 1 23

cos sin 2 2
2 4 8

1

4

ty t t t e cos t sin t    
     

     

5. CONCLUSION 

Throughout the paper, we have discussed some 

applications of Laplace Transform in various fields of 

Engineering.  
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