

212 International Journal for Modern Trends in Science and Technology

As per UGC guidelines an electronic bar code is provided to seure your paper

International Journal for Modern Trends in Science and Technology, 8(08): 212-216, 2022
Copyright © 2022 International Journal for Modern Trends in Science and Technology

ISSN: 2455-3778 online

DOI: https://doi.org/10.46501/IJMTST0808030
Available online at: http://www.ijmtst.com/vol8issue08.html

Preventing Password False Detection by Providing

Security, using Reliable Honey Words

Dangeti Surya Vamsi, V.Bhaskara Murthy

Dept Of MCA, B.V.Raju College, Bhimavaram

Associate Professor , Dept Of MCA, B.V.Raju College, Bhimavaram

To Cite this Article

Dangeti Surya Vamsi and V.Bhaskara Murthy. Preventing Password False Detection by Providing Security, using

Reliable Honey Words. International Journal for Modern Trends in Science and Technology 2022, 8(08), pp. 212-216.

https://doi.org/10.46501/IJMTST0808030

Article Info

Received: 22 July 2022; Accepted: 15 August 2022; Published: 21 August 2022.

 Breach in password databases has been a frequent phenomena in the software industry. Often these breaches go undetected for

years. Sometimes, even the companies involved are not aware of the breach. Even after they are detected, publicizing such attacks

might not always be in the best interest of the companies. This calls for a strong breach detection mechanism. Juels et al. (in

ACM-CCS 2013) suggest a method called ‘Honeywords’, for detecting password database breaches. Their idea is to generate

multiple fake passwords, called honeywords and store them along with the real password. Any login attempt with honeywords

isidentified as a compromise of the password database, since legitimate users are not expected to know the honeywords

corresponding to their passwords. The key components of their idea are (i) generation of honeywords, (ii) typo-safety measures

for preventing false alarms, (iii) alarm policy upon detection, and (iv) testing robustness of the system against various attacks.In

this work, we analyze the limitations of existing honeyword generation techniques. We propose a new attack model called

‘Multiple System Intersection attack considering Input’. We show that the ‘Paired Distance Protocol’ proposed by Chakraborty

et al., is not secure in this attack model. We also propose new and more practical honeyword generation techniques and call them

the ‘evolving-password model’, the ‘user-profile model’, and the ‘append-secret model’. These techniques achieve ‘approximate

flatness’, implying that the honeywords generated using these techniques are indistinguishable from passwords with high

probability. Our proposed techniques overcome most of the risks and limitations associated with existing techniques. We prove

flatness of our ‘evolving-password model’ technique through experimental analysis. We provide a comparison of our proposed

models with the existing ones under various attack models to justify our claims.

 Breach in password databases has been a frequent phenomena in the software industry. Often these breaches go undetected for

years. Sometimes, even the companies involved are not aware of the breach. Even after they are detected, publicizing such attacks

might not always be in the best interest of the companies. This calls for a strong breach detection mechanism. Juels et al. (in

ACM-CCS 2013) suggest a method called ‘Honeywords’, for detecting password database breaches. Their idea is to generate

multiple fake passwords, called honeywords and store them along with the real password. Any login attempt with honeywords

isidentified as a compromise of the password database, since legitimate users are not expected to know the honeywords

corresponding to their passwords. The key components of their idea are (i) generation of honeywords, (ii) typo-safety measures

for preventing false alarms, (iii) alarm policy upon detection, and (iv) testing robustness of the system against various attacks.In

this work, we analyze the limitations of existing honeyword generation techniques. We propose a new attack model called

‘Multiple System Intersection attack considering Input’. We show that the ‘Paired Distance Protocol’ proposed by Chakraborty

ABSTRACT

https://doi.org/10.46501/IJMTST0808030
http://www.ijmtst.com/vol8issue08.html
https://doi.org/10.46501/IJMTST0808030
https://doi.org/10.46501/IJMTST0808030
http://www.ijmtst.com/vol7issue11.html

213 International Journal for Modern Trends in Science and Technology

et al., is not secure in this attack model. We also propose new and more practical honeyword generation techniques and call them

the ‘evolving-password model’, the ‘user-profile model’, and the ‘append-secret model’. These techniques achieve ‘approximate

flatness’, implying that the honeywords generated using these techniques are indistinguishable from passwords with high

probability. Our proposed techniques overcome most of the risks and limitations associated with existing techniques. We prove

flatness of our ‘evolving-password model’ technique through experimental analysis. We provide a comparison of our proposed

models with the existing ones under various attack models to justify our claims.

1. INTRODUCTION

 Password based authentication is the most widely

accepted and cost effective authentication technique. In

general practice, passwords are never stored in clear text

to ensure confidentiality. Instead they are hashed and

then stored along with other user related information.

The process of performing a one-way transformation on

the password and to obtain another string called the

‘hashed’ password is known as ‘password hashing’.

There are several ways to prevent an attacker from

performing a dictionary attack by increasing the

complexity of this attack manifolds. Making the

password hashing algorithm more resource consuming

is one way to prevent the adversary from

pre-computing the dictionary. This was the main

objective behind the Password Hashing Competition

(PHC) that ran from 2013-2015. To further improve the

security, use of cryptographic module for password

hashing is explained in . Another approach is to

introduce confusion by adding a list of fake passwords

along with the correct password. This would discourage

the adversary to mount dictionary attack even after

compromising the database. In this technique, the server

generates multiple fake passwords called honey words

for each user, and stores them along with the actual

password chosen by the user. Even if an attacker gets

access to the password database, she would not be able

to distinguish the actual password from honey words.

Therefore with a very high probability, she is expected

to enter a honey word to carry out the attack. If a honey

word is entered instead of the password, the system

raises an alarm, thus detecting the compromise of

password database. The efficiency of this system

basically depends on the ability of the honey word

generation scheme to generate honey words that are

indistinguishable from the real password. The authors

in, provide some heuristic honey word generation along

with detailed analysis of the system implementing the

honey words technique. Continuing along the same line

of research, we provide an experimental method for

quantifying the flatness of honey word generation

schemes. We also implement a distancemeasure

between password and honey word using

‘Levenshteindistance’to avoid false detection when a

legitimate user makes a typing error and enters a honey

word.

2. EXISTING SYSTEM

 There are several ways to prevent an attacker from

performing a dictionary attack by increasing the

complexity of this attack manifolds. Making the

password hashing algorithm more resource consuming

is one way to prevent the adversary from precomputing

the dictionary. This was the main objective behind the

Password Hashing Competition (PHC). To further

improve the security, use of cryptographic module for

password hashing. Another approach is to introduce

confusion by adding a list of fake passwords along with

the correct password. This would discourage the

adversary to mount dictionary attack even after

compromising the database. This approach, of using

fake passwords can help in detecting password

database breaches. Specifically, any login attempt with

one of the fake passwords detects the breach. The idea

was influenced from some other existing techniques

mentioned below. The honeypot technique, introduced

in early 90’s, is a system or component which influences

the adversary to attack the wrong targets, namely honey

pot accounts.

DISADVANTAGES

• Honey pot accounts are fake accounts created by the

system administrator to detect password database

breaches. Honey token is a honey pot that contains fake

entries like social security or credit card numbers to

identify malicious activity. Is a theft-resistant password

manager that creates multiple decoy password lists

along with the correct password list. Frequent cases of

password database breaches(like that of LinkedIn in

2012 , Adobe in 2013 , eBay in 2014 , Ashley Madison in

2015 etc.,) are indicative of security issues in the current

password based authentication systems which can fail

to ensure user privacy. No efficient solution to detect

such database breaches had been reported

214 International Journal for Modern Trends in Science and Technology

3. PROPOSED SYSTEM

 The Honey words technique is a significant

contribution towards detecting breaches of the

password database. In this technique, the server

generates multiple fake passwords called honey words

for each user, and stores them along with the actual

password chosen by the user. Even if an attacker gets

access to the password database, she would not be able

to distinguish the actual password from honey words.

Therefore with a very high probability, she is expected

to enter a honey word to carry out the attack. If a honey

word is entered instead of the password, the system

raises an alarm, thus detecting the compromise of

password database. The efficiency of this system

basically depends on the ability of the honey word

generation scheme to generate honey words that are

indistinguishable from the real password. The authors

provide some heuristic honey word generation

techniques, along with detailed analysis of the system

implementing the honey words technique. Continuing

along the same line of research, we provide an

experimental method for quantifying the flatness of

honey word generation schemes. We also implement a

distance-measure between password and honey word

using

ADVANTAGES

• By using honeyword, it helps to protect the

critical/important personal data of the Govt

population Data/Banking data.

• . It provides more security than existing system.

• It protects con dential data from in-sider as well as

outsider.

• This honeyword will save million dol-lars of the IT

organisation by protect-ing the con dential data

from attacker or unauthorized users.

4. ARCHITECTURE DIAGRAM

5. IMPLEMENTATION

Initialization

Firstly, T fake user accounts (honeypots) are created

with their passwords. Also an index value between

[1;N], but not used previously is assigned to each

honeypot randomly. Then k � 1 numbers are randomly

selected from the index list and for each account a honey

index set is built like Xi = (xi;1; xi;2; : : : ; xi;k); one of the

elements in Xi is the correct index (sugarindex) as ci.

Now, we use two password _les as F1 and F2 in the

main server: F1 stores username and honeyin- dex set,

<hui;Xi> pairs as shown in Table 2, where hui denotes a

honeypot accounts. On the other hand F2 keeps index

number and corresponding hash of password, <ci;H(pi)

>, as depicted in Table 3. Let SI denote index column and

SH represent the corresponding password hash column

of F2. Then the function f(ci) that gives password hash

value in SH for the index value ci can be de_ned as: f(ci)

= fH(pi) 2 SH :<ci;H(pi) > stored pair of ui and ci 2 SIg.

Registration

After the initialization process, system is ready for user

registration. In this phase, a legacy-UI is preferred, i.e. a

username and password are required from the user as

ui; pi to register the system. We use the honeyindex

generator algo-rithmGen(k; SI) ! ci;Xi, which outputs ci

as the correct index for ui and the honeyindexes Xi =

(xi;1; xi;2; : : : ; xi;k). Note that Gen(k; SI) produces Xi by

randomly selecting k �1 numbers from SI and also

randomly picking a number ci =2 SI . So ci becomes one

of the elements of Xi. One can see that the generator

algorithm Gen(k; SI) is di_erent from the procedure

215 International Journal for Modern Trends in Science and Technology

described in [9], since it outputs an array of integers

rather than a group of honeywords. Note, however, that

the index array Xi is indeed represents which

honeywords are assigned for ui.

Honeychecker

In our approach, the auxiliary service honeychecker is

employed to store correct indexes for each account and

we assume that it communicates with the main server

through a secure channel in an authenticated manner.

Indeed, it can be assumed that security enhancements

for honeychecker and the main server presented in [16]

are applied, but it is out scope of this study. The role and

primary processes of the honeychecker are the same as

described in the original study [9], except that <i; ci >

pair is replaced with <ui; ci > pair in our case. The

honeychecker executes two commands sent by the main

server. The honeychecker only knows the correct index

for a username, but not the password or hash of the

password.

Login Process

System firstly checks whether entered password, g, is

correct for the correspond- ing username ui. To do this,

the hash values stored in F2 _le for the respective indices

in Xi are compared with H(g) to _nd a match. If a match

is not obtained, then it means that g is neither the correct

password nor one of the honeywords, i.e. login fails. On

the other hand, if H(g) is found in the list, then the main

server checks whether the account is a honeypot. If it is a

honeypot, then it follows a prede_ned security policy

against the password disclosure scenario. Notice that for

a honeypot account there is no importance of the

entered password is genuine or a honeyword, so it

directly manages the event without communicating

with the honeychecker. If, however, H(g) is in the list

and it is not a honeypot, the corresponding j 2 Xi is

delivered to honeychecker with username as <ui; j > to

verify it is the correct index. Honeychecker controls

whether j = ci and returns result to the main server. At

the same time if it is not equal then it assured that the

proffered password is a honeyword and adequate

actions should be taken depending on the policy.

6. CONCLUSION

 In this paper, we proposed a password protection

scheme called ENP, and presented a password

authentication framework based on the ENP. In our

framework, the entries in the authentication data table

are ENPs. In the end, we analyzed and compared the

attack complexity of hashed password, salted password,

key stretching and the ENP. The results show that the

ENP could resist lookup table attack and provide

stronger password protection under dictionary attack. It

is worth mentioning that the ENP does not need extra

elements (e.g., salt) while resisting lookup table attack.

Conflict of interest statement

Authors declare that they do not have any conflict of

interest.

REFERENCES

[1] Sharing in MULTICS. In Proceedings of the Fourth Symposium

on Operating System Principles, SOSP 1973, Thomas J. Watson,

Research Center, Yorktown Heights, New York, USA, October

15-17, 1973.

[2] Robert Morris and Ken Thompson. Password Security: A Case

History, 1979. http://cswww.cs.yale.edu/homes/arvind/cs422/

doc/unix-sec.pdf.

[3] S. Philippe Oechslin. Making a faster cryptanalytic time-memory

trade-off. In Dan Boneh, editor, Advances in Cryptology –

CRYPTO 2003, 23rd Annual International Cryptology

Conference, Santa Barbara, California, USA, August 17-21, 2003,

Proceedings, volume 2729 of Lecture Notes in Computer Science,

pages 617–630. Springer, 2003.

[4] Password Hashing Competition

(PHC),2014.https://passwordhashing.net/index.html.

[5] Donghoon Chang, Arpan Jati, Sweta Mishra, and Somitra Kumar

Sanadhya. Rig: A simple, secure and flexible design for password

hashing. In Dongdai Lin, Moti Yung, and Jianying Zhou, editors,

Information Security and Cryptology - 10th International

Conference, Inscrypt 2014, Beijing, China, December 13-15, 2014,

Revised Selected Papers, volume 8957 of Lecture Notes in

Computer Science, pages 361–381. Springer, 2014.

[6] Ari Juels and Ronald L. Rivest. Honeywords: making

passwordcracking detectable. In 2013 ACM SIGSAC Conference

on Computer and Communications Security, CCS’13, Berlin,

Germany, November 4- 8, 2013, 2013.

[7] Fred Cohen. The Use of Deception Techniques: Honeypots and

Decoys. http://all.net/journal/deception/Deception Techniques

.pdf.

[8] Lance Spitzner. Honeytokens: The Other Honeypot, 2003.

http://www.symantec.com/connect/articles/

honeytokens-other-honeypot..

[9] HristoBojinov, Elie Bursztein, Xavier Boyen, and Dan Boneh.

Kamouflage: Lossresistant password management. In Computer

Security - ESORICS 2010, 15th European Symposium on Research

216 International Journal for Modern Trends in Science and Technology

in Computer Security, Athens, Greece, September 20-22, 2010.

Proceedings, pages 286–302, 2010.

[10] Wikipedia contributors. 2012 LinkedIn hack. Wikipedia, The Free

Encyclopedia, Date retrieved: 29 May

2016.Availableat:https://en.wikipedia.org/w/index.php?title=201

2 LinkedIn hack&oldid=722095159.

[11] Bruce Schneier. Cryptographic Blunders Revealed by Adobe’s

Password Leak. Schneier on Security, 2013. Available at:

https://www.schneier.com/blog/archives/2013/11/ cryptographic

b.html.

[12] Swati Khandelwal. Hacking any eBay Account in just 1 minute,

2014. Available at: http://thehackernews.com/2014/09/

hacking-ebay-accounts.html.

[13] Wikipedia contributors. Ashley Madison data breach. Wikipedia,

The Free Encyclopedia, Date retrieved: 29 May 2016. Available at:

https://en.wikipedia.org/w/index.php?title= Ashley Madison

data breach&oldid=721001290.

[14] Troy Hunt. Observations and thoughts on the LinkedIn data

breach, 2015. Available at: https://www.troyhunt.com/

observations-and-thoughts-on-the-linkedin-data-breach/.

[15] Michael Gilleland. Levenshtein Distance, in Three Flavors.

Available at:

http://people.cs.pitt.edu/_kirk/cs1501/assignments/editdistance/L

evenshtein%20Distanc e.html.

