Available online at: <u>http://www.ijmtst.com/vol4issue6.html</u>

International Journal for Modern Trends in Science and Technology ISSN: 2455-3778 :: Volume: 04, Issue No: 06, June 2018

Determination of Structural Strength of Pavement using FWD and Remaining Life Analysis

J. Pothalaiah¹| B. Srikanth²

¹PG Scholar, Department of Civil Engineering, MVR College of Engineering and Technology, Paritala, Andhra Pradesh, India.

²Assistant Professor, Department of Civil Engineering, MVR College of Engineering and Technology, Paritala, Andhra Pradesh, India.

To Cite this Article

J. Pothalaiah and B. Srikanth, "Determination of Structural Strength of Pavement using FWD and Remaining Life Analysis", *International Journal for Modern Trends in Science and Technology*, Vol. 04, Issue 06, June 2018, pp: 39-51.

ABSTRACT

Pavement structure is typically composed of several layers of different material, each of which receives the loads from the above layer, spreads the mout, and then passes the monto the layer below. Material layers are usually arranged with in a pavement structure in order of descending load bearing capacity with the highest load bearing capacity material on the top and the lowest load bearing capacity material on the bottom. In general pavements should be designed to perform satisfactorily with out developing un acceptable level sofdistresses during the design life period. The structural adequacy of the existing pavement is demonstrated based on the study of structural performance of the pavement. If a pavement shows load associated distress like fracture, permanent deformation etc., then it is considered to have failed structurally. To ensure that unacceptable levels of distresses do not occur during design period, the critical strains developed under the load should be less than the limiting strain values corresponding to the design traffic selected. Structural evaluation of pavements involves application of a standard load to the pavement and measuring its response interms of stress, strain ordeflection. Among the equipment available for structural evaluation of pavements, the Falling Weight Deflectometer (FWD) is extensively used world-wide because its imulates, to a large extent, the actual loading conditions of the pavement.

Copyright © 2018 International Journal for Modern Trends in Science and Technology All rights reserved.

I. INTRODUCTION

The resulting load-deflection data can be interpreted through appropriate analytical techniques, such as back calculation technique, to estimate the elastic moduli of the pavement layers.The computed moduli are, inturn, used for [1][3]

- the strength evaluation of different layers of in-service pavements
- the estimation of the remaining life of in-service pavement
- determination of strengthening requirement, if any and

• Evaluation of different rehabilitation alternatives(overlay,recycling,partialreconstruc tion,etc.).

The guide lines for the test and evaluation of structural condition of in-service pavements is detailedinIRC- 115:2014.The

II. ANALYSIS METHODOLOGY

IRC:115-2014 provides detailed procedure for the evaluation of structural condition of in-service pavements using deflection data from Falling Weight Deflectometer as well as other pavement data as inputs to a back calculation model for

IRC-115 determining the elastic moduli of pavement layers, and,the reafter, using these moduli as inputs to WELCOME TO KGPBACK PROGRAM FOR BACKCALCULATION OF LAYER MODULI FOR 3-LAYER PAVEMENT SYSTEMS apavement design model for estimating the over layr equirement.[4] Developed by Transportation Engg Division Civil Engineering Department INDIAN INSTITUTE OF TECHNOLOGY, Kharagpur Accordingly, the sequence of analys is steps as per the IRC: 115-2014 is as follows The recorded data will be normalized to a KGPBACK PROGRAM IS BASED ON GENETIC ALGORITHM IT USES ELASTIC LAYERED PROGRAM FOR FORWARD CALCULATION OF SURFACE DEFLECTIONS. standard load (IRC115) The normalized deflections will be then IMPORTANT NOTE: FOR GOOD BACKCALCULATION RESULTS THE MODULI RANGES HAVE TO BE SELCTED JUDICIOUSLY processed and back calculated using KGP BACK to obtain Elastic Modulus value so PRINT INPUT DATA PL. SEE THE MANUAL SUPPLIED FOR HELP fBituminous, Granular layer and Sub-grade. YPE PEAK FWD LOAD (N), CONTACT PRESSURE (MPa) tandard Values are 40000 0.56 The corrections factors for temperature 56 corrections and seasonal variations will be HOW MANY DEFLECTIONS WERE MEASURED (4 TO 10)? applied to all layers as suggested in PRINT RAD.DISTANCES (mm) WHERE DEFLECT. WERE MEASURED eg: 0, 300, 600, 900, 1200, 1500 is a Typical Configuration for six Geophones IRC:115-2014 Preparation of Homogenous sections and 00 00 00 200 selecting 15thpercentile Moduli values for the purpose of design;[5][6] 800 Checking the in-service ability of the Pavement RINT MEASURED DEFLECTIONS IN mm. layers through Performance criteria- analysing 116 0942 the Remaining life. 966 0406 0340 Sequence of FWD data analysis and snapshot of THE PAVEMENT RELATED INPUTS (3-LAYER SYSTEM) EACH LAYER THICKNESS(mm). START FROM TOP applications used for analysis are presented in PRINT RAD.DISTANCES (mm) WHERE DEFLECT. WERE MEASURED eg: 0, 300, 600, 900, 1200, 1500 is a Typical Configuration for six Geophones figures below. Data Quality Check Procedures Raw deflection data is **FWD** Testing (e.g. data inconsistency Normalised to 40KN check) RINT MEASURED DEFLECTIONS IN mm. Back calculation Identify Homogenous Adopting proper .1161 Selection of 15th Process using KGPback Section - through corrections for arrived 0942 0665 to arive Modulus of Cumulative Difference percentile Modulus moduli exisiting layers Approach method 0406 0349 .0182 .0165 TYPE EACH LAYER THICKNESS(mm). START FROM TOP Analysis of the in-Estimation of Design Overlay service pavement by computation of Critica Remaining Life -90 Fatigue and Rutting thickness 60 strains (IITPAVE) Performance checks YPE POISSON RATIO OF EACH LAYER. START FROM TOP suggested values are 0.5 0.4 0.4 Figure 1 Flow chart of FWD data analysis ys puv Δ INPUT RANGE (lower and upper) FOR EACH LAYER MODULUS Please note that Backcalculation Results will depend on the selection of appropriate Ranges. The slection of Ranges has to be made judiciously on the basis of of the Pavement Condition PRINT LOWER AND UPPER BOUND MODULI (MPa) LAYERS Pl. See the Manual supplied for guidance 8000 00 YOU CAN FIND THE RESULTS IN backout FILE IN THE # SAME DIRECTORY. USE Notepad TO SEE RESULTS # KGPBACK IS RUNNING PLEASE WAIT !!! # Figure 2: Sample Calculation – KGPBACK

# INPUT DATA #	
No.of Layers	= 3
FWD Load (N)	= 40000.00
Contact Pressure (MPa)	= .56
No.of Deflection points	= 7
Deflections measured using FWD (mm)	= .11610 .09420 .06650 .04060 .03490 .01820 .01650
Radial distances from centre of load(mm)	0 300.0 600.0 900.0 1200.0 1500.0 1800.0
Layer thickness (mm)	= 190.00 460.00
Poisson ratio values	= .50 .40 .40
Layer Modulus (MPa) Ranges Selected :-	
(a) Bituminous Surfacing	= 750.0 3000.0
(b) Granular Base	- 100.0 500.0
(c) Subgrade	= 295.2 442.8

Backcalculated Layer Moduli are: Surface (MPa) = 2997.8		
Surface (MPa) = 2997.8	Backcalculated	Layer Moduli are:
	Surface (MPa)	= 2997.8
Base (MPa) = 496.5	Base (MPa)	= 496.5
Subgrade (MPa) = 333.4	Subgrade (MPa)	- 333.4

Figure 3: KGPBACK Output

VIEW RESULTS	
☐ OPEN FILLE IN EDITOR Ø VIEW HERE Ø	ACK TO EDIT HOME
No. of layers 3	
E values (MPa) 2349.00 161.00 195.0	00
Mu values 0.500.400.40	
thicknesses (mm) 160.00 360.00	
single wheel load (N) 20000.00	
tyre pressure (MPa) 0.56	
Dual Wheel	
Z R SigmaZ SigmaT Sigr	maR TaoRZ DispZ epZ epT epR
160.00 0.00-0.9229E-01 0.7259E+00 0.6165E-	+00-0.9904E-02 0.2506E+00-0.3250E-03 0.1974E-03 0.1276E-03
160.00L 0.00-0.9228E-01-0.1390E-01-0.2193E	-01-0.9903E-02 0.2506E+00-0.4842E-03 0.1974E-03 0.1276E-03
160.00 155.00-0.8720E-01 0.6367E+00 0.4149E	+00-0.3245E-01 0.2611E+00-0.2609E-03 0.2013E-03 0.5965E-04
160.00L 155.00-0.8720E-01-0.1498E-01-0.3126E-	-01-0.3245E-01 0.2611E+00-0.4267E-03 0.2013E-03 0.5965E-04
520.00 0.00-0.3468E-01-0.5246E-02-0.7016E-	-02-0.5434E-02 0.1423E+00-0.1849E-03 0.7100E-04 0.5561E-04
	-02-0.5432E-02 0.1423E+00 <u>-0 1674E-03 0</u> .7103E-04 0.5563E-04
	-02-0.7439E-02 0.1473E+00 <mark>-0.2013E-03 0.7499E-04</mark> 0.6431E-04
520.00L 155.00-0.3740E-01-0.1556E-02-0.3044E-	-02-0.7428E-02 0.1473E+00-0.1824E-03 0.7499E-04 0.6431E-04

2.1 Procedure

The FWD measurements have been carried out at spacing of 250 and 500 m per lane at slow lane and fast lane respectively in the provided stretches.

Fig 5: FWD Photos

Deflections measured by the FWD equipment are influenced bv pavement temperature. Measurements the made when pavement temperature is different than standard temperature has be corrected. The deflection measurements, pavement temperature, subgrade soil & deflection, and other information collected deflection during the study have been recorded.[7][9]

Following procedure has been followed for measurement of FWD:

The test location is marked on the field.

The loading plate along with the deflection sensors have been lowered at the test location.

The target load has been applied and the deflections have been measured for 3 times.

The first load is considered as a seating load and the values are not adopted for analysis.

2.2 Temperature Measurement

The standard temperature for doing the experiment is 35°C. Since it is not possible to conduct the test at the standard temperature, a correction factor has to be applied for the deflection. The correction factor is determined by knowing the temperature at the time of the survey. The pavement temperature during the survey has been measured for every one hour by drilling a hole of 40mm in the pavement and filling it with glycerol[10].[4]

III. BACK CALCULATION AND DATA REQUIRED Software used:

KGPBACK – Genetic Algorithm based software for back calculating the layer moduli. Works on three layer system (Bituminous, Granular & Subgrade)

3.1 Data required:

Deflections at various radial distances are given in Annexure-9.

Existing layer thickness – the existing layer thicknesses of various stretches have been obtained from the test pit results[11][12]

Layer moduli range – the layer moduli adopted for the analysis is shown in next section

Poisson's ratio: BT-0.5, Granular-0.4, Subgrade-0.4 (For Back calculation and IITPAVE analysis without considering overlay).

3.2 Existing Layer thickness

Thickness of existing bituminous and granular layer is as given below.

Table 1 Existing crust thickness (MPa)

	Applicabl		13	Crust Thickness		
Test	Chainage		Side			
Location	From	То		Bituminous	Granular	
2+000	0+000	3+000	LHS	200	430	
4+000	3+000	5+000	LHS	190	380	
6+000	5+000	7+000	LHS	160	450	
8+000	7+000	8+900	LHS	180	440	
9+800	8+900	10+900	LHS	160	430	
12+000	10+900	13+080	LHS	155	430	
14+160	13+080	16+080	LHS	190	350	
18+000	16+080	19+000	LHS	195	360	
20+000	19+000	22+950	LHS	190	365	
25+900	22+950	26+950	LHS	180	380	
28+000	26+950	29+000	LHS	200	500	
30+000	29+000	30+950	LHS	190	430	
31+900	30+950	3 <mark>2+9</mark> 50	LHS	200	420	
34+000	32+950	35+000	LHS	200	500	
36+000	35+000	37+000	LHS	190	480	
38+000	37+000	39+000	LHS	180	410	
40+000	39+000	42+000	LHS	190	370	
44+000	42+000	45+000	LHS	190	400	
46+000	45+000	47+000	LHS	185	410	
48+000	47+000	<mark>48+</mark> 850	LHS	170	400	
49+700	48+850	50+775	LHS	180	420	
0+900	0+000	4+850	RHS	200	430	
8+800	4+850	10+900	RHS	170	400	
13+000	10+900	15+000	RHS	185	360	
17+000	15+000	19+020	RHS	190	360	
21+040	19+020	23+100	RHS	185	430	
25+160	23+100	25+955	RHS	180	380	
26+750	25+955	27+945	RHS	200	430	
29+140	27+945	30+070	RHS	190	400	
31+000	30+070	32+000	RHS	200	430	
33+000	32+000	34+000	RHS	285	300	
35+000	34+000	36+000	RHS	200	380	
37+000	36+000	40+000	RHS	200	420	
43+000	40+000	44+000	RHS	200	410	
45+000	44+000	46+000	RHS	210	420	
47+000	46+000	48+000	RHS	220	450	
49+000	48+000	51+000	RHS	210	450	

3.3 Range of Moduli

Table 2 Range of moduli (MPa)

Type of Layer	Lower and Upper Limit (Mpa)							
Subgrade	Based on deflections at 1200, 1500 and 1800 mm; Equation III. 2 (of Appendix-III)- IRC:115-2014							

Type of Layer	Lower and Upper Limit (Mpa)
Granular	100 to 500
Bituminous	750 to 3000

3.4 Correction for Temperature

The stiffness of bituminous layer is highly susceptible to temperature and hence consequently the surface deflections of a given pavement will vary depending on the temperature of the constituent bituminous layers. If the depth of the BT surface is more than 40mm, then correction factor has to be applied. If the depth is less i.e., if it is a thin bituminous surfacing like premix carpet and surface dressing, then no correction is required. Correction for temperature variation on deflection values measured at temperature other than 35°C should be calculated by the formula provided in IRC 115[15].

The key points to consider are:

Pavement temperature range applicable for correction factor -20 °C to 45 °C.

FWD shall not be carried for pavement temperature more than 45°C

Temperature correction not required for following cases

Bituminous layers (depth < 40 mm)

"Po<mark>or" s</mark>ections

Wh<mark>ere average daily te</mark>mperature is < 20°C for more than 4 months

3.5 Correction for Seasonal Variation

Moisture content affects the strength of subgrade and granular subbase/base layers. The extent to which the strength is affected will depend on the nature of subgrade soil, gradation and nature of fines in the granular layers, etc. For the purpose of applying these guidelines, it is intended that the pavement layer moduli values should pertain to the period when the subgrade is at its weakest condition. As per IRC: 115-2014, granular layers and subgrade will be in its weakest condition during the post-monsoon season. Since survey was during winter season conducted seasonal correction as per Equation 6 and Equation 9 of IRC: 115-2014 were applied.[16][17]

IV. REMAINING LIFE AND OVERLAY ESTIMATION

The in-service three-layer pavement system has been analysed with the back-calculated corrected layer moduli and layer thicknesses. The critical strain shave been calculated by IIT PAVE program. From the performance criteria equations, the residual/remaining rutting and fatigue life have been estimated.

4.1 Performance Criteria

The layer moduli of in-service pavement back calculated from FWD deflection data are used to analyse the pavement for critical strains which are indicators of pavement performance in terms of rutting and fatigue cracking. The remaining life of pavement can be obtained using the Fatigue and Rutting criteria mentioned in IRC – 115:2014 and in IRC-37:2012, the same approach can be used for design of bituminous overlays for existing flexible pavements. The performance models are as follows.[19][21]

4.2 Fatigue in Bituminous layer:

As it specified inIRC-37:2012, the fatigue model for90 percent reliability (4.35% air voids and 13.0% bitumen)was used as below; Nf = $1.0*10^{-04}x[1/\epsilon t]^{3.89}*[1/M_R]^{0.854}$ Where,

Nf =fatigue life in number of standardaxles,

 ϵ_t =Maximum Tensile strain at the bottom of the bituminous layer

M_R=resilient modulus of the bituminous layer.

4. 3 Rutting in Subgrade:

Rutting modelfor90percentreliability level as specified in IRC:115-2014was used as below; N= 1.41 x $10^{-08}[1/\epsilon_V]^{4.5337}$ Where,

N= Number of cumulative standardaxles, and ε_V =Verticalstrain inthesubgrade

	0	1.		and the second	12.1			1. 1.	1 A A A A A A A A A A A A A A A A A A A	1			e
S1.	Homogenous Sections		Side	Thickne	ess, mm	-	Moduli, M	IPa	Strains		Remaining Life 90% reliability(msa) :4.35% ai voids and 13% bitumen		
No	From	То	(LHS/R HS)	Existi ng BT	Existin g Granul ar	BT	Granul ar	Subgra de	Tensile	Vertical	Fatig ue	Ruttin g	Remaini ng life
1	0+00 0	24+2 50	LHS	160	360	234 9	161	1 <mark>95</mark>	0.00020 13	-0.00020 13	31 <mark>.57</mark>	806.2 7	31.57
2	24+2 50	31+2 50	LHS	180	380	210 3	77	187	0.00 <mark>023</mark> 2	-0.00026 75	19.98	222.1 6	19.98
3	31+2 50	38+7 50	LHS	180	410	211 2	146	231	0.00019 4	-0.00017 11	39.92	1684. 74	39.92
4	38+7 50	49+5 00	LHS	170	370	227 7	117	198	0.000 <mark>21</mark> 1	-0.00022 15	27.00	522.6 3	27.00
		/					1						
1	0+00 0	25+3 60	RHS	170	360	235 9	116	182	0.00020 71	-0.00022 73	28.17	464.8 4	28.17
2	25+3 60	35+5 00	RHS	190	300	189 4	73	175	0.00023 33	-0.00031 61	21.38	104.2 2	21.38
3	35+5 00	41+2 50	RHS	200	410	230 2	132	208	0.00016 64	-0.00016 12	67.37	2207. 44	67.37
4	41+2 50	49+5 00	RHS	200	410	249 6	75	209	0.00017 87	-0.00021 44	47.64	605.8 2	47.64

Table3 : Remaining Life of Existing Pavement

Table 4 : Overlay requirement for a design period of 10 years

S 1	Homog Sect	genous ions	Sid e (LH			Overlay Thickness, 1		Moduli, MPa		Strains		Remaining Life 90% reliability(msa) :4.35% air voids and 13% bitumen		Des	Ch		
N o	From	То	S/ RH S)	Th ic kn es s	Mo dul i, MP a	Existi ng BT	Existi ng Gran ular	BT	Gr an ula r	Sub grad e	Tensile	Vertical	Fati gue	Rutti ng	Remai ning life	ign ms a	ec k
							Overlay	for de	sign p	eriod of	10 years						
1	0+00 0	24+2 50	LH S	-	-	160	360	23 49	16 1	195	0.0002 013	-0.0002 013	31.5 7	806.2 7	31.57	25. 3	Saf e
2	24+2 50	31+2 50	LH S	40	30 00	180	380	21 03	77	187	0.0001 786	-0.0002 085	55.2 7	687.5 2	55.27	25. 3	Saf e
3	31+2 50	38+7 50	LH S	-	-	180	410	21 12	14 6	231	0.0001 94	-0.0001 711	39.9 2	1684. 74	39.92	25. 3	Saf e
4	38+7 50	49+5 00	LH S	-	-	170	370	22 77	11 7	198	0.0002 11	-0.0002 215	27.0 0	522.6 3	27.00	25. 3	Saf e

s 1	Homog Sect		Sid e (LH			, , , , , , , , , , , , , , , , ,		Ioduli, MPa S		Str	Strains		Remaining Life 90% reliability(msa) :4.35% air voids and 13% bitumen		Des	Ch	
N o	From	То	S/ RH S)	Th ic kn es s	Mo dul i, MP a	Existi ng BT	Existi ng Gran ular	BT	Gr an ula r	Sub grad e	Tensile	Vertical	Fati gue	Rutti ng	Remai ning life	ms a	ec k
1	0+00 0	25+3 60	RH S	-	-	170	360	23 59	11 6	182	0.0002 071	-0.0002 273	28.1 7	464.8 4	28.17	25. 3	Saf e
2	25+3 60	35+5 00	RH S	40	30 00	190	300	18 94	73	175	0.0001 799	-0.0002 434	58.7 6	340.8 5	58.76	25. 3	Saf e
3	35+5 00	41+2 50	RH S	-	-	200	410	23 02	13 2	208	0.0001 664	-0.0001 612	67.3 7	2207. 44	67.37	25. 3	Saf e
4	41+2 50	49+5 00	RH S		1	200	410	24 96	75	209	0.0001 787	-0.0002 144	47.6 4	605.8 2	47.64	25. 3	Saf e
	as follows.																

V. SUMMARY OF OBSERVATIONS AND FIELD INVESTIGATIONS

5.1 Determination of Maintenance Requirement

The performance of a pavement is affected by the type, time of application, quality of the maintenance receives. Preventive it timely maintenance pavement slows the rate of deterioration due to traffic and environmentally applied loads. Delays in maintenance and deferred maintenance increase the quantity of defects and their severity so that, when corrected, the cost of repair is greater as shown in the figure below.

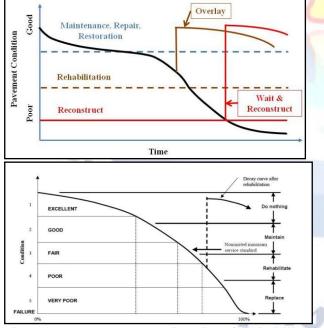


Figure6 : Pavement Deterioration / Rehabilitation Relationship

As the operation period is 30 years (i.e. from FY 2019 to 2048), the operation period is divided into 4 cycles for the purpose of analysis and the functional and structural overlays are proposed to be carried as mentioned in the table below. The maintenance cycles in 30-year period is divided

S.	Descriptio	Year ofOverla	Design c Perio		Remarks	
No.	n	у	From	То		
1	Base Year Cycle	2023	2018	2027	Overlay as per FWD analysis As per Table 8-12	
2	Cycle 1	2025	2025	2034	Functiona 1 Overlay as per AASHTO analysis.	
3	Cycle 2	2032	2032	2041	Functiona 1 Overlay as per AASHTO analysis.	
4	Cycle 3	2039	2039	2048	Functiona 1 Overlay as per AASHTO analysis.	

Table 5: Maintenance Cycles

VI. FUTURE MAINTENANCE REQUIREMENTS

Thecycle1, 2 and 3 overlay isworked out as per AASHTO guidelines.

6.1 Overlay (Cycle 1, 2 and 3)

The overlay thickness wascalculatedasperAASHTOguidelines. The design methodology/ procedure is explained asbelow;

The design MSA (n1) adopted for design is mentioned in the table below.

S1.No.	Description	Design MSA(n1)								
1	Cycle 1	33								
2	Cycle 2	40								
3	Cycle 3	47								
<i>M</i> 11 <i>C</i> 										

Table6: Design msa for cycle 1, 2 and 3 Step-A:Calculationof existingstructuralthickness(SNe)

$SN_e = a1*D1 + a2*D2*m3 + a3*D3*m3$

a1, a2, a3= layer coefficients for surface, base and subbase courses respectively.

D1, D2, D3= layer thickness for surface, base and subbase courses respectively (in inches) m2, m3=1, Drainage coefficients.

Step-B: Calculation of required structural thickness (SNf) for the design traffic

The required pavement crust thickness for the design traffic is calculated with the given below equation; this empirical equation is widely used and has the following form:

 $\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}(SN + 1) - 0.20 + \frac{\log_{10}\left(\frac{\Delta I \cdot SI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN + 1)^{519}}} + 2.32 \times \log_{10}(M_R) - 8.07$

Where,

W18 =Predicted numberof80 kN(18,000 lb.)ESALsi.e.,design life

Z_R =standardnormaldeviate

S₀ =combinedstandarderrorofthe

trafficpredictionand performanceprediction

SN =Structural Number(an index thatisindicative ofthetotal pavementthickness required)required forthedesign traffic ΔPSI =differencebetween initialdesignserviceability index,p₀,andthedesign terminalserviceability index,p_t

the

MR =subgraderesilientmodulus(inkpsi)

Step-C: Determination of Overlay Index

The thickness of Overlay is computed as follows;

SN₀₁= required overlay structural Number= SNf-SNe

a₀₁=

StructuralCoefficientfortheBituminousOverlay (0.44wasconsiderasperAASHTO) D₀1= RequiredOverlayThickness,inches SNol= aol*Dol.

Asitisdescribed

intheabovestatedstepsAtoC,therequired overlay thicknesswascalculated forthe cycle 1, 2 and 3.Obtained recommended overlay thicknessispresented in Table below.Iftheobtained calculated thicknessislessthan30 mm,aminimumof 30mmof overlayisassumed forexecution.

Table 7:	Cycle 1,	2 and	3 overlay

	CYCLE-1												
•	Homogenous Sections		Side	Thickness after first overlay, mm			SN		Subgrad e	SN	SN for Overla	Thicknes	Adopte
	From	То	(LHS/RH S)	BT, h1	WMM , h2	GSB , h3	Existin g (inch)	Desig n msa	Moduli, MPa (MR)	require d (inches)	y (inches)	s for Overlay (mm)	d overlay (mm)
1	0+000	24+25 0	LHS	16 0	160	200	4.43	33	195	3.81	0.00	0	30
2	24+25 0	31+25 0	LHS	22 0	180	200	5.58	33	187	3.87	0.00	0	30
3	31+25 0	38+75 0	LHS	18 0	200	200	5.00	33	231	3.58	0.00	0	30
4	38+75 0	49+50 0	LHS	17 0	240	130	4.77	33	198	3.79	0.00	0	30
			0	1						6			
1	0+000	25+36 0	RHS	17 0	160	200	4.61	33	182	3.91	0.00	0	30
2	25+36 0	35+50 0	RHS	23 0	200	100	<mark>5.48</mark>	33	175	3.97	0.00	0	30
3	35+50 0	41+25 0	RHS	20 0	220	180	5.38	33	208	3.72	0.00	0	30
4	41+25 0	49+50 0	RHS	20 0	230	180	5.43	33	209	3.71	0.00	0	30
	CYCLE-2												
Sl. No	Homogenous Sections		Side		Thickness after cycle-1, overlay, mm		SN Existin	Desig	Subgrad e	SN require	SN for Overla	Thicknes s for	Adopte d
	From	То	(LHS/RH S)	BT, h1	WMM , h2	GSB g (inch) , h3	n msa	Moduli, MPa (MR)	d (inches)	y (inches)	Overlay (mm)	overlay (mm)	

J. Pothalaiah and B. Srikanth : Determin	ation of Structural Str	renath of Pavement us	sina FWD and Remainin	a Life Analysis
j. i ochalalan ana D. Si ikanch . Determin	<i>u u u u u u u u u u</i>	i chigan of i aveniene as	nig i vid una nomannin	g hije maiysis

1												
0+000	24+25 0	LHS	19 0	160	200	4.95	40	195	3.93	0.00	0	30
24+25 0	31+25 0	LHS	25 0	180	200	6.10	40	187	3.99	0.00	0	30
31+25 0	38+75 0	LHS	21 0	200	200	5.52	40	231	3.69	0.00	0	30
38+75 0	49+50 0	LHS	20 0	240	130	5.29	40	198	3.91	0.00	0	30
0+000	25+36 0	RHS	20 0	160	200	5.13	40	182	4.03	0.00	0	30
25+36 0	35+50 0	RHS	26 0	200	100	6.00	40	175	4.09	0.00	0	30
35+50 0	41+25 0	RHS	23 0	220	180	5.90	40	208	3.83	0.00	0	30
41+25 0	49+50 0	RHS	23 0	230	180	5.95	40	209	3.83	0.00	0	30
CYCLE-3												
Homogenous Sections		Side	cycle	e-2 overlay, mm		SN	Desig	Subgrad e Maduli	SN require	SN for Overla	Thicknes s for	Adopte d
From	То	S)	BT, h1	WMM , h2	GSB , h3	g (inch)	n msa	MPa (MR)	d (inches)	(inches)	Overlay (mm)	overlay (mm)
0+000	24+25 0	LHS	22 0	160	200	5.47	47	195	4.03	0.00	0	30
24+25 0	31+25 0	LHS	28 0	180	200	6.62	47	187	4.09	0.00	0	30
31+25 0	38+75 0	LHS	24 0	200	200	6.04	47	231	3.79	0.00	0	30
38+75 0	49+50 0	LHS	23 0	240	130	<mark>5.</mark> 81	47	198	<mark>4.0</mark> 1	0.00	0	30
	5			1	V				V	S	N V	
0+000	25+36 0	RHS	23 0	160	200	5.65	47	182	<mark>4.1</mark> 3	0.00	0	30
25+36 0	35+50 0	RHS	29 0	200	100	6.52	47	175	4.19	0.00	0	30
35+50 0	41+25 0	RHS	26 0	220	180	6.42	47	208	3.94	0.00	0	30
41+25 0	49+50 0	RHS	26 0	230	180	6.47	47	209	3.93	0.00	0	30
	0 31+25 0 38+75 0 0+000 25+36 0 35+50 0 Homog Secti From 0+000 24+25 0 31+25 0 31+25 0 0 31+25 0 0 0 25+36 0 0 1+25 0 0 0 1+25 0 0 1+25 0 0 1+25 0 1+25 0 0 1+25 0 0 1+25 0 0 1+25 0 0 1+25 0 0 1+25 0 0 1+25 0 0 1+25 0 0 1+25 0 0 1+25 0 0 1+25 0 0 1+25 0 0 0 1+25 0 0 1+25 0 0 0 1+25 0 0 1+25 0 0 0 1+25 0 0 1+25 0 0 0 1+25 0 0 0 1+25 0 0 1+25 0 0 0 1+25 0 0 1+25 0 1 1+25 0 1 1+25 0 1+25 0 1+25 0 1+25 0 1+25 0 1+25 1+	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24+25 $31+25$ LHS 0 0 LHS $31+25$ $38+75$ LHS 0 0 LHS $38+75$ $49+50$ LHS 0 0 LHS 0 0 LHS 0 0 RHS $25+36$ $35+50$ RHS 0 0 RHS $25+36$ 0 0 $35+50$ $41+25$ RHS 0 0 0 0 0 0 0 0 $1+25$ 0 0 $1+8$ 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24+25 $31+25$ LHS 25 180 $31+25$ 0 211 200 $38+75$ $49+50$ LHS 20 240 0 0 0 $25+36$ 20 240 0 0 0 0 240 0 0 0 0 0 240 0 0 0 0 0 240 0 0 0 0 0 240 0 0 0 0 0 240 0 0 0 0 0 0 240 0 0 0 0 230 0 220 0 0 0 0 0 230 0 230 0 0 0 0 0 230 0 230 0 0 0 0 0 0 0 0 0 0 0 <t< td=""><td>24+25 $31+25$ LHS 25 180 200 $31+25$ $38+75$ LHS 21 200 200 $38+75$ $49+50$ LHS 20 240 130 0 0 LHS 20 240 130 0 0 LHS 0 240 130 0 0 LHS 0 240 130 0 0 RHS 0 240 130 0 0 RHS 20 240 130 0 0 0 240 130 0 0 0 200 100 $35+50$ $41+25$ RHS 23 220 180 $41+25$ $49+50$ RHS 23 230 180 $141+25$ $49+50$ 216 2160 200 200 $24+25$ $31+25$ LHS 22 160 200 200 $24+25$ $31+25$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></t<>	24+25 $31+25$ LHS 25 180 200 $31+25$ $38+75$ LHS 21 200 200 $38+75$ $49+50$ LHS 20 240 130 0 0 LHS 20 240 130 0 0 LHS 0 240 130 0 0 LHS 0 240 130 0 0 RHS 0 240 130 0 0 RHS 20 240 130 0 0 0 240 130 0 0 0 200 100 $35+50$ $41+25$ RHS 23 220 180 $41+25$ $49+50$ RHS 23 230 180 $141+25$ $49+50$ 216 2160 200 200 $24+25$ $31+25$ LHS 22 160 200 200 $24+25$ $31+25$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

6.2 Summary of Structural / Functional Overlays

The recommended structural/functionaloverlayis given in Table below

S. N o	Yea r	Description	RecommendedOverla y		
	2023	Overlay (thicknessasperFW D analysis)	Asspecified inTable8-12(Average 40 mm on LHS and 40 mm on RHS)		
	2025	Functional Overlay as per AASHTO	Asspecified inTable8-15(Average 30 mm BC)		
	2032	Functional Overlay as per AASHTO	As specified in Table 8-15(Average 30 mm BC)		
	2039	FunctionalOverlay as per AASHTO	As specified in Table 8-15(Average 30 mm BC)		

VII. ANALYSIS OF NSV DATA -PAVEMENT CONDITION

The analysis of various performance parameter data collected during NSV survey is presented in this section.

7.1 pavement Condition Index (PCI)

Analysisofpavementdistresses(cracks,potholes,pa tching,etc.)isundertaken to determine Pavement Condition Index (PCI) of the Project Stretch. The PCI rates condition of surface of aroad and provides a numerical rating for the condition of pavement segments within the Project Stretch, where 0 is the worst possible condition and 100 is the best possible condition.[22][23] PCI provide same a sure of present condition of pavement based on distress observed on surface of pavement, which also indicates structura lintegrity and surface operational condition (localized roughness and safety). PCI cannot measure structural capacity nor does it provide

direct measurement of skid resistance or roughness. It provides an objective andrationalbasisfordeterminingmaintenanceandr epairneedsandpriorities.

100	GOOD
85	SATISFACTORY
70	FAIR
55	POOR
40	VERY POOR
25	SERIOUS
10	FAILED

Figure 7: Pavement Condition Index (PCI) rating scale

7. 2 PavementCondition Index(PCI) rating scale

The PCIfora section of the pavement is calculated in following five steps.

Step I

The first step is the determination of distress types and severity levels of each distress type in the inspection units. This data is obtained after processing the field survey data. Firstly, the total quantity of each distress type a teach severity level is added. Then the total quantity of each distress type at each severity level is divided by the total area of the sample unit(10m section)and multipliesby100to obtain the percent density of each distress.

Step II

Determination of deduct values for each of the distresses and under each severity level from the distress deduct value curves as shown in the Figure 8.

Step III

Computation of total deduct value by adding the deduct values of all distress types under each severity levels.

Step IV

Determination of the maximum corrected deduct value(CDV)from the graph as shown inthe Figure 8-16.

Step V

Compute Pavement Condition Index(PCI)= 100-CDVforeach sample unit in spected

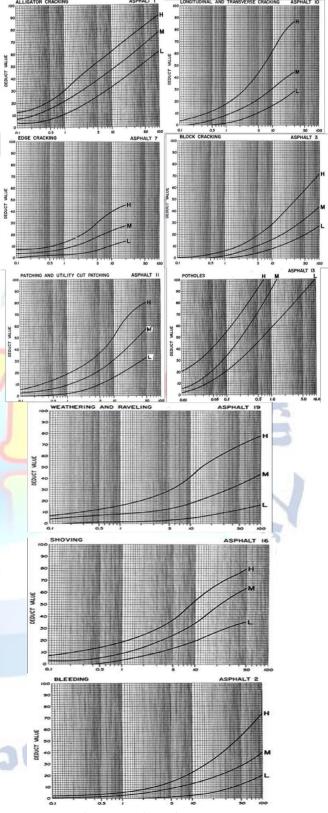


Figure 8: DeductValueCurves

J. Pothalaiah and B. Srikanth : Determination of Structural Strength of Pavement using FWD and Remaining Life Analysis

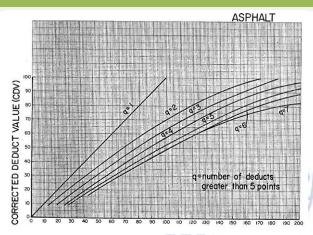


Figure 9:CorrectedDeductValue(CDV)curve

The PCIobservedforall 4lanes(2-LHSand 2-RHS) are presented in the figuresbelow.

ItcanbeseenfromtheabovefiguresthatPCIvalueissim ilarinbothlanes.Fromfieldsurvey,similartypesof distress have been observed atboth the lanesforboththedirection.

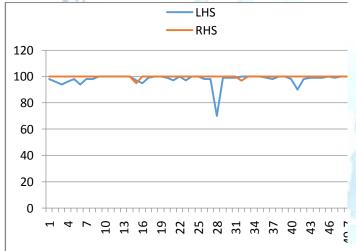


Figure 10 PavementConditionIndexforLHSandRHS carriageway

ItisobservedthatPCIvaluewassimilarin	
boththedirection.100%PCIvalue	condition
wasgoodatboththe directions.	

7.3 Roughness

Roughnessisoneoftheimportantparametersfordeter miningthefunctionalcharacteristicsof pavements. According

toAmericanSocietyforTestingandMaterials(ASTM),r oughnessisdefinedas"thedeviationsofapavement surfacefroma trueplanarsurfacewith characteristicdimensionsthataffectvehicledynamics, ridequality,dynamic

loads, and drainage, for example, longitudinal profile, tr ansverse profile and crossslope".

TheInternationalRoughnessIndex(IRI),BumpIntegratorRoughness(BI)isusedtodefinethecharacteristicsofalongitudinalroad

profileandconstitutesastandardizedroughnessmea surement.IRI,BIismeasuredinmetresperkilometre (m/km)ormillimetrespermetre(mm/m).

The

roughnessofroadsurfacesismeasuredusingdifferent equipment/techniquessuchasrodand level survey, dip stick profiler,profilographs, response typeroadroughnessmetersandprofilingdevices.

In India, theroughnessis measured using fifth wheel bump integrator (developed by CRRI) and is reported as Unevenness Index (UI) in mm/km.

However,NationalHighwayAuthorityofIndia(NHAI), vialetterno.11041/218/2007–Admndated03.11.20 09 on

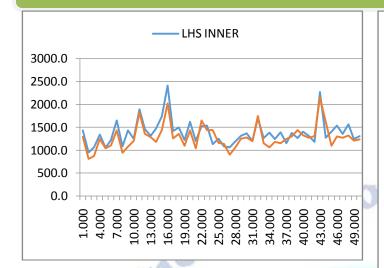
POLICYMATTERS–TECHNICAL(37/2009)hasapproved the use ofLaserProfilingdevicesforNHAlworks.

CorrelationbetweenBumpIntegratorRoughnessa ndInternationalRoughnessIndex(IRI) The accepted

worldstandardistheInternationalRoughnessIndex(I RI)forroughness.TheIRIwasan outcome of theInternationalRoadRoughnessExperimentcondu ctedinBrazil(Sayersetal.,1986a)and is reproducible,

portableandstablewithtime.Theequipmentisinclud ed with software tocalculateandprintvariousprofilestatisticsincludin gtheIRIaswellastheindividualpointelevationandloca lsurface curvatures.Forcorrelationwith BIvaluesthefollowingrelationshouldbeused:

BI=630*(IRI)^{1.12}


Where,BI=

BumpIntegratorRoughnessorUnevennessIndex in mm/km

IRI= InternationalRoughnessIndex

Roughnesscondition detailslength wise forboth the directiongiven in table below

The RoughnessIndex observed forall 4lanes(2-LHSand 2-RHS)are presented in thefiguresbelow

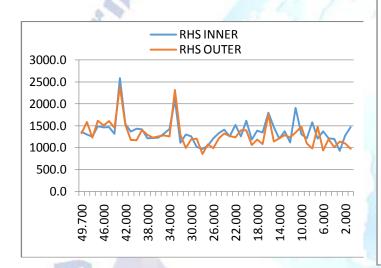


Figure 12 Roughness Index for Inner and Outer Lane for RHS carriageway

It isobservedthatroughnessindexwassimilarin both lanesforRHSbutinLHSouterlaneroughnessis higher as compare

toinner.TheRoughnessIndexofouterlaneofLHSatma nysectionswere beyond thedesirablelimitof 2000 mm/km.

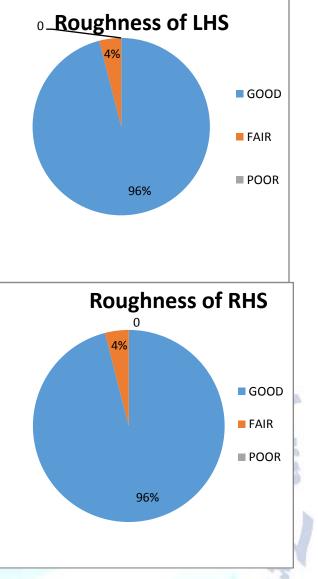


Figure 13 : Roughness Index for LHS and RHS carriageway

It isobservedthatRoughnessIndex in LHS washigherascomparedtoRHS,because more numberofloadedand overloaded vehicle observed inLHS.Also,LHShashigherVDF compared toRHS.

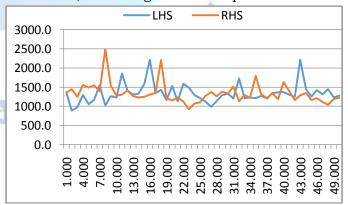


Figure 14: Roughness Condition Index for LHS and RHS carriageway

Itisobservedfrom pie-chart,90% of the

projectstretchonLHShasroughnessvaluein good condition whereas 97% inRHS.

VIII. CONCLUSIONS

The structural adequacy of the existing pavement is demonstrated based on the study of structural performance of the pavement. If a pavement shows load associated distress like fracture, permanent deformation etc., then it is considered to have failed structurally. To ensure that unacceptable levels of distressesd on ot occur during design period, the critical strains developed under the load should be less than the limiting strain values corresponding to the design traffic selected. Structural evaluation of pavements involves application of a standard load to the pavement and measuring its response interms of stress, strain ordeflection. Among the equipment available for structural evaluation of pavements, the Falling Weight Deflectometer (FWD) is extensively used world-wide because its imulates, to a large extent, the actual loading conditions of the pavement

REFERENCES

- [1] Federal Highway Administration. How to Get LTPP Data, U.S. Department of Transportation, Washington, DC. Obtained from: http://www.fhwa.dot.gov/research/tfhrc/ programs/infrastructure/pavements/ltpp/getdata. cfm.
- [2] Strategic Highway Research Program. (1993). Manual for FWD Testing in the Long-Term Pavement Performance Program, 9, Report No. SHRP-P-661, Version 2.0, National Research Council, Washington, DC.
- [3] California Department of Transportation. (1979).
 "Test to Determine Overlay and Maintenance Requirements by Pavement Deflection Measurements," Caltrans Test Method No. 356, Sacramento, CA.
- [4] Stubstad, R., Jiang, Y.J., Clevenson, M.L., and Lukanen, E.O. (2006). Review of the LTPP Backcalculation Results, Report No. FHWA-HRT-05-150, Federal Highway Administration, Washington, DC.
- [5] Kim, Y.R. (2000). "Assessing Pavement Layer Condition Using Deflection Data," National Cooperative Highway Research Program Project 10-48, Final Report, Transportation Research Board, Washington, DC.
- [6] Lukanen, E.O., Stubstad, R., and Briggs, R. (2000). Temperature Predictions and Adjustment Factors for Asphalt Pavement, Report No. FHWA-RD-98-085, Federal Highway Administration, Washington, DC.
- [7] Hossain, M., Chowdhury, T., Chitrapu, S., and Gisi, A.J. (2000). "Network-Level Pavement Deflection

Testing and Structural Evaluation," Journal of Testing and Evaluation, 28(3), 199–206. 8. AASHTO. (1993).

- [8] Guide for Design of Pavement Structures, American Association of State Highway and Transportation Officials, Washington, DC.
- [9] Ullidtz, P. (1998). Modeling Flexible Pavement Response and Performance, Polyteknisk Forlag, Lyngby, Denmark.
- [10] Scullion, T. (1988). Incorporating a Structural Strength Index into the Texas Pavement Evaluation
 System, Report No. FHWA/TX-88/409-3F, Federal Highway Administration, Washington, DC.
- [11] Perrone, E., Dossey, T., and Hudson, W.R. (1994). Network-Level Deflection Data Collection for Rigid Pavement, Interim Report, Texas Department of Transportation, Austin, TX.
- [12] Diefenderfer, B.K. (2008). Network-Level Pavement Evaluation of Virginia's Interstate System Using the Falling Weight Deflectometer, Report VTRC 08-R18, Virginia Transportation Research Council, Charlottesville, VA. 182
- [13] Ferne, B.W. (1997). Use of Deflections at Network Level in England for Programming and Other Purposes, Cost 336 Workshop at National Laboratory for Civil Engineering, Lisbon, Portugal.
- [14] Horak, E. (2008). "Benchmarking the Structural Condition of Flexible Pavements with Deflection Bowl Parameters," Journal of the South African Institution of Civil Engineering, 50(2), 2–9.
- [15] Sapkota, B. (2003). Use of FWD in the Network Level Pavement Condition Survey, Presented at the 12th Annual FWD Users Group Meeting, Wichita, KS.
- [16] Ferne, B., Sinhal, R., and Fairclough, R. (2009). Structural Assessment of the English Strategic Road Network— Latest Developments, Proceedings from the Eighth International Conference on Bearing Capacity of Roads, Railways, and Airfields, Champaign, IL.
- [17] Zhang, Z., Claros, G., Manuel, L., and Damnjanovic, I. (2003). "Development of Structural Condition Index to Support Pavement Maintenance and Rehabilitation Decisions at Network Level," Transportation Research Record 1827, 10–17, Transportation Research Board, Washington, DC.
- [18]Zhang, Z., Manuel, L., Damnjanovic, I., and Li, Z.
 (2003). Development of a New Methodology for Characterizing Pavement Structural Condition for Network-Level Applications, Report No.
 FHWA/TX-04/0-4322-1, Federal Highway Administration, Washington, DC.
- [19] AASHTO. (1998). AASHTO Guide for Design of Pavement Structures: Part II—Rigid Pavement Design and Rigid Pavement Joint Design, 4th Edition, Supplement, American Association of State Highway and Transportation Officials, Washington, DC.
- [20] Virginia Department of Transportation. (1992). The Pavement Subsystem User Manual for the Highway

nal For

and Traffic Records Information System (HTRIS), Richmond, VA.

- [21] Chang, J-R., Lin, J-D., Chung, W-C., and Chen, D-H. (2002). "Evaluating the Structural Strength of Flexible Pavements in Taiwan Using the Falling Weight Deflectometer," International Journal of Pavement Engineering, 3(3), 131–141.
- [22] Ullidtz, P. and Stubstad, R. (1996–1997). ELMOD Users Guide, Dynatest International A/S, Copenhagen, Denmark.
- [23] Carvalho, R.L., Ayres, M., Shirazi, H., Selezneva, O., and Darter, M. (2011). Impact of Design Features on Pavement Response and Performance in Rehabilitated Flexible and Rigid Pavements, Report No. FHWA-HRT-10-066, Federal Highway Administration, Washington, DC.
- [24] Airport Cooperative Research Program. (2008). ACRP Report 3—Analysis of Aircraft Overruns and Undershoots for Runway Safety Areas, Transportation Research Board, Washington, DC.

out so pub asuaiss