

20 International Journal for Modern Trends in Science and Technology

As per UGC guidelines an electronic bar code is provided to secure your paper

International Journal for Modern Trends in Science and Technology

Volume 12, Issue 01, pages 20-29.
ISSN: 2455-3778 online

Available online at: http://www.ijmtst.com/vol12issue01.html
DOI: https://doi.org/10.5281/zenodo.18362290

A Novel Approach for Detecting Android Malware

Through Co-Occurrence using Machine Learning

Bandela Charan1 | Dr. K. Naga Sujatha2

1Department of Electrical and Electronics Engineering JNTUH University College of Engineering Science and Technology Hyderabad, T.S,

India-500085

charanbandela123@gmail.com
2Professor, Department of Electrical and Electronics Engineering JNTUH University College of Engineering Science and Technology

Hyderabad, T.S, India-500085

kns@jntuh.ac.in

To Cite this Article

Bandela Charan & Dr. K. Naga Sujatha (2026). A Novel Approach for Detecting Android Malware Through

Co-Occurrence using Machine Learning. International Journal for Modern Trends in Science and Technology, 12(01),

20-29. https://doi.org/10.5281/zenodo.18362290

Article Info

Received: 28 December 2025; Revised: 16 January 2026; Accepted: 20 January 2026.

Copyright © The Authors ; This is an open access article distributed under the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

KEYWORDS ABSTRACT

Co-existence,

FP-Growth,

Machine learning algorithms,

Malware”.

Traditional approaches to Android malware detection primarily depend on signature-based

methods. While these methods have been widely adopted, they fall short when it comes to

identifying newly emerging malware variants that are not yet present in known databases.

To address this limitation, this project proposes a novel machine learning-based technique

emphasizing static features, specifically permissions and API calls, within Android

applications. Unlike conventional detection techniques, which typically involve static

analysis or runtime behavior monitoring, our approach emphasizes the extraction of

meaningful patterns from the static features of APK files. Static analysis alone often lacks

comprehensive coverage, leaving security gaps. Therefore, this method is designed to

overcome these gaps by investigating the co- existence patterns of permissions and APIs,

which are often indicative of malicious behavior when compared to legitimate applications.

To implement this, a new dataset will be constructed by analyzing Android APK samples

from existing reputable datasets. This dataset will capture various combinations of

permissions and API calls along with their frequencies. The Frequent Pattern Growth

(FP-Growth) will be employed to identify the most significant co-occurrence patterns

among these features, which act as reliable indicators for differentiating between harmful

and benign applications. Subsequently, these extracted features will be fed into various

conventional machine learning algorithms to evaluate their effectiveness in malware

detection. The primary objective is to enhance the accuracy, robustness, and generalizability

http://www.ijmtst.com/vol12issue01.html
https://doi.org/10.5281/zenodo.18362290
mailto:charanbandela123@gmail.com
mailto:kns@jntuh.ac.in
https://doi.org/10.5281/zenodo.18362290
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.18362290
http://www.ijmtst.com/

21 International Journal for Modern Trends in Science and Technology

of malware classification models. Through leveraging the power of feature co-existence

analysis and machine learning, this approach is expected to outperform several

contemporary state-of-the-art methods. The entire implementation will be carried out using

either Windows or Linux operating systems, with Python as the primary programming

language for dataset creation, feature extraction, and model evaluation.

1. INTRODUCTION

The smartphone industry has witnessed exponential

growth over the past decade, with global sales

anticipated to surpass 351 million units by 2024 [1].

Among mobile operating systems, Android leads the

market with a user base exceeding 2.5 billion across

more than 190 countries [2]. The platform’s openness

and flexibility have enabled rich user experiences but

have also exposed it to significant security threats.

Malware developers increasingly target Android,

exploiting its open-source nature to create and distribute

harmful applications [3]. These threats are often shared

via trusted app marketplaces like the official Android

marketplace and various external app repositories such

as AppChina and AppBrain, where monitoring

mechanisms are comparatively weak [6], [13]. Studies

have revealed that nearly 50% of apps on AppChina and

22% on Google Play Store exhibited malicious behavior

[6].

Conventional malware prevention techniques have

depended on signature-based detection systems that

match new applications against known malware

patterns [7]. While effective against existing threats,

these systems fail to identify novel, obfuscated, or

repackaged malware [8]. For example, obfuscation

techniques can effectively hide malware features,

rendering traditional scanners ineffective [9]. As a

response to these limitations, researchers have shifted

focus toward machine learning (ML)-based solutions.

These techniques can identify malicious applications

based on patterns in static or dynamic features, even

when traditional indicators are hidden or altered [10].

Machine learning-driven identification of malicious

software may be broadly divided into static and

dynamic approaches. Static analysis examines code

without executing the app, focusing on features like

requested permissions, API calls, and intents [11], [12].In

Conversely, dynamic analysis entails executing and

observing the software within a regulated environment

to study its real-time activities and detect any malicious

activities [13]. However, static features often overlap

between benign and malicious apps, making it difficult

to distinguish between them. This has led to the

incorporation of feature selection techniques to extract

the most relevant and non-redundant attributes [14],

[15]. Among these, the co-occurrence of characteristics

like access rights and API invocations has emerged as a

novel indicator of malicious behavior [22].Several

studies have proposed enhanced detection methods by

integrating multiple feature vectors. Techniques that use

combinations of static features, such as permissions and

APIs, have achieved notable accuracy. For instance,

Tiwari and Shukla used optimized permissions and APIs

to achieve detection accuracies above 97% [10]. Similarly,

Arp et al. introduced DREBIN, a static analysis tool

capable of detecting malware directly on the device,

identifying 94% of threats with minimal false positives

[13]. Despite these successes in controlled environments,

real-world performance remains inconsistent,

highlighting the challenge of creating universally

effective detection systems [21], [22].

To address these gaps, recent research has focused on

developing models that evaluate the interdependence of

features rather than treating them in isolation. This

includes the use of frequent pattern growth (FP- Growth)

algorithms for mining relevant co- occurrence patterns in

large datasets [18]. Combining such mining techniques

with ML classifiers, including ensemble models like

stacking classifiers, offers promising improvements in

detection performance.These ensemble approaches

utilize diverse classifiers—such as Random Forest,

LightGBM, and MLP—and leverage them for enhancing

generalization and reducing error rates [19], [20].

In this context, our study proposes a novel AI-driven

framework designed to identify malicious software

within the Android platform, leveraging the co-

occurrence of static features.By integrating optimized

feature selection and ensemble learning, the system

enhances accuracy and robustness across multiple

benchmark datasets including DREBIN, CIC-

MALDROID2020, and Malgenome. The ultimate goal is

to build a lightweight, accurate, and practical solution

that addresses current gaps in Android malware

detection systems.

22 International Journal for Modern Trends in Science and Technology

2. METHODOLOGY

A. Proposed Work:

The model proposed in this research introduces a

specialized computational framework for detecting

malicious Android applications that emphasizes the

importance of co-occurring permissions and APIs in

accurately discriminating between trustworthy and

malicious software. This model demonstrates superior

accuracy compared to existing approaches when

evaluated on well-known datasets such as Drebin,

CIC_MALDROID2020, and Malgenome [9], [13], [21],

with the core objective of enhancing Android security

and safeguarding user privacy. To achieve this, a

Stacking Classifier has been implemented, combining

the predictive performance of Multi-Layer Perceptron

(MLP),Random Forest and LightGBM classifiers, which

collectively enhance feature extraction and improve

overall prediction accuracy. Furthermore, a user-friendly

system was developed utilizing the Flask framework in

combination with SQLite, supporting secure user

authentication through sign-up and sign-in

functionalities while enabling users to submit

applications for analysis and receive malware detection

results efficiently. This comprehensive design makes the

system practical, reliable, and well- suited for real-world

Android security applications.

B. System Architecture:

The architecture of the proposed system begins with a

dataset consisting of Android applications, where the

attributes are derived based on various co-occurrence

combinations of permissions and APIs [4], [5], [7].The

dataset is systematically partitioned into two seperate

divisions,,namely a training dataset and a testing

dataset. The training dataset acts as the foundation for

constructing a predictive modeling framework (KNN,

SVM, RF, DT, LR and extension- stacking classifier).

These models are specifically designed to accurately

distinguish safe applications from malicious ones. Once

the models are trained,the performance and

effectiveness is assessed using the testing set, ensuring

the models are capable of accurately classifying

previously unseen applications based on the learned

patterns of feature co-occurrence.

Fig 1 Proposed architecture

C. Dataset collection:

(i)DREBIN

The Drebin dataset is among the most well-known and

extensively utilized datasets for Android malware

detection and research, offering a substantial collection

of both benign and malicious Android applications. Its

broad size and diversity make it a popular standard for

evaluating malware detection models, as it supports the

development of more robust and generalizable machine

learning solutions [9], [13], [25]. In this work, the Drebin

dataset has been utilized along with various feature

combinations to strengthen the malware detection

process. To provide an initial understanding of the

dataset, the top five records corresponding to each

feature combination are displayed, clearly showing the

structure and the number of columns involved in the

analysis.

Table 1: Drebin datasets

23 International Journal for Modern Trends in Science and Technology

(ii)MALGENOME

The Malgenome dataset is especially chosen to contain

a broad spectrum of malicious software specimens,

thereby serving as a significant resource for focused

malware analysis and research. Unlike broader datasets,

Malgenome offers specialized samples that complement

datasets like Drebin by providing targeted examples for

the development and assessment of malware

identification models.Within this research, the

Malgenome dataset has been utilized with various

feature combinations to enhance the accuracy of

malware detection [9], [17]. To illustrate the structure of

the dataset, the top five rows for each feature

combination are presented, allowing a clear view of the

dataset’s attributes and the number of columns involved

in the analysis.

Table 2: Malgenome datasets

(iii)CIC_MALDROID2020

CIC_MALDROID2020 is provided by the Canadian

Institute for Cybersecurity (CIC) and is known for its

size, recency, diversity, and comprehensiveness.

Similarly, we have used CIC_MALDROID2020 dataset

with these feature combinations. We are displaying top 5

rows of the data with each feature combination here. and

we can see the no. columns present.

Table 3: CIC_MALDROID2020 datasets

24 International Journal for Modern Trends in Science and Technology

D. Data Processing:

Data processing includes converting unprocessed data

into valuable information for businesses. Generally,data

scientists often handle data by gathering, systematizing,

processing, confirming, scrutinizing and transforming it

into easily understandable presentations like texts or

graphs.Data processing can be accomplished through

three primary approaches: manual, mechanical, and

electronic. The objective of this process is to enhance the

usefulness of information and support more effective

strategic choices.This allows organizations to refine their

operations and take prompt, evidence- based actions that

shape their long-term direction. Computerized

information handling systems, supported by digital

applications, are instrumental in enhancing

efficiency.This capability enables the transformation of

extensive datasets, including big data, into actionable

insights that support decision- making and process

quality control.

E. Feature selection:

It refers to the technique for recognizing and retaining

the key attributes within a dataset with the aim of

boosting the effectiveness of machine learning

algorithms.As datasets steadily increase in volume and

structural complexity, systematically minimizing the

number of features they contain becomes crucial.The

main of feature selection is to strengthen the predictive

capability of machine learning models while also

minimizing the computing resources required for

training and evaluation.

Feature selection is an essential stage in the wider field

of feature engineering. It focuses on eliminating

irrelevant or redundant features, narrowing down the

dataset to include only those variables that contribute

meaningfully to the model’s predictive capability.By

performing attribute selection before training, we can

ensure that the machine learning model works more

efficiently and effectively, rather than depending on the

model itself to identify which features matter most.

F. Algorithms:

Logistic Regression is a commonly used classification

approach designed to forecast the probability of a given

input being part of a specific category.This algorithm

utilizes a sigmoid (logistic) mapping to transform input

features to a likelihood value bounded between 0 and

1.By applying a predefined threshold, the algorithm

assigns the data point into classes determined by this

likelihood, selecting one of two or more possible

outcomes.Throughout the training phase, the learning

system optimizes its parameters to represent the data

effectively, enabling accurate and reliable classifications.

A Support Vector Classifier (SVC) represents

supervised learning method that determines the optimal

separating plane to classify data. By using key data

points known as support vectors, it maximizes the

distance between classes, allowing it to handle both

binary and multi-class classification effectively

K-Nearest Neighbors (KNN) is a fundamental

supervised learning method employed in both

regression and classification tasks. It forecasts results

through the identification of K closest instances and

using majority voting or averaging. While easy to

implement, its accuracy depends on the choice of K and

it may face difficulties when handling high dimensional

data lacking proper preprocessing [30].

Random Forest represents an ensemble-based

supervised learning approach that builds a collection of

decision trees to produce outcomes. It operates by

training every tree with randomly selected subsets of the

dataset and then combining their outputs through

averaging or voting. This approach enhances the

reliability of results, reduces overfitting, and ensures

reliable results for both classification and regression

applications.

A Decision Tree is a machine learning algorithm

which forecasts results by repeatedly dividing dataset

into smaller subsets according to the most important

attributes. It forms a hierarchical structure where nodes

represent features and branches indicate possible

decisions.This clear and interpretable structure renders it

effective across diverse classification and prediction

tasks.

A Stacking Classifier represents an ensemble-based

learning approach which integrates the outputs from

several base classifiers, such as Multi-Layer Perceptron

(MLP), Random Forest (RF),and LightGBM, to generate a

more precise overall outcome.This method takes

advantage of the distinct capabilities of individual

models to enhance overall performance.In this approach,

the base models undergo training on the dataset, after

which their predicted outputs are provided as inputs to

the meta- learner, which learns the optimal way to merge

25 International Journal for Modern Trends in Science and Technology

these outputs to produce the final result.Stacking is a

powerful technique used for improving prediction

reliability and is commonly employed in machine

learning for various applications.

3. RESULTS ANALYSIS

A. Accuracy: The accuracy refers to the capability of a test

to correctly distinguish between diseased and healthy

cases.To determine the accuracy, it is essential to

calculate the ratio of accurately identified positive and

negative cases in comparison with the overall number of

instances assessed. Mathematically, this can be

expressed as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+FP+TN+FN
 (1)

B. Precision: Precision expresses the share of actual

positive outcomes within the set of samples the model

designates as positive.Hence, the formula used to

compute precision is given by:

𝑃𝑟ecision =
True Positive

True Positive +False Positive
` (2)

C. Recall: Recall serves as an evaluation measure in

machine learning that assesses how effectively a model

identifies every applicable instance within a specific

class. It is calculated as the proportion between correctly

predicted positive cases and the overall number of true

positives, reflecting how effectively the model identifies

every relevant instance belonging to that category.

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
 (3)

D. F1-Score: F1 Score is a performance measure in

machine learning that integrates precision and recall to

evaluate a model’s effectiveness. It merges precision and

recall into one unified value, offering a trade-off between

the two. In contrast, the accuracy metric only considers

the overall count of correct outcomes generated by a

model across the entire dataset

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 X 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
∗ 100 (4)

Table (4 to 6) assess how well each algorithm performs

based on the metrics of Accuracy, Precision, Recall, and

F1-Score.Across all evaluation criteria , the

API+Permission: Stacking Classifier

(CIC_MALDROID2020) & API: Stacking Classifier

consistently outperforms all remaining algorithms. The

tables also provide a comparative evaluation of metrics

for the other algorithms.

Table.4 Performance Evaluation Table - CIC_MALDROID2020

ML Model Accuracy Precision F1_score Recall

API+Permission : LR 0.99 0.98 0.98 0.99

API+Permission : SVC 0.99 0.98 0.99 1.00

API+Permission : KNN 0.97 0.94 0.97 0.99

API+Permission : RF 0.97 0.97 0.97 0.97

API+Permission : DT 0.95 0.97 0.95 0.94

API+Permission : Stacking Classifier 1.00 1.00 1.00 1.00

API : LR 0.95 0.94 0.95 0.97

API : SVC 0.96 0.94 0.96 0.97

API : KNN 0.94 0.93 0.94 0.95

API : RF 0.94 0.94 0.94 0.94

API : DT 0.95 0.95 0.94 0.94

API : Stacking Classifier 0.97 0.98 0.97 0.96

Permission : LR 0.95 0.93 0.95 0.97

Permission : SVC 0.95 0.92 0.95 0.97

Permission : KNN 0.94 0.90 0.94 0.99

Permission : RF 0.95 0.93 0.95 0.97

Permission : DT 0.95 0.94 0.95 0.95

Permission : Stacking Classifier 0.99 0.98 0.99 1.00

Table.5 Performance Evaluation Table - Drebin Dataset

ML Model Accuracy Precision F1_score Recall

API+Permission : LR 0.93 0.89 0.91 0.92

API+Permission : SVC 0.94 0.91 0.92 0.93

API+Permission : KNN 0.94 0.90 0.92 0.93

API+Permission : RF 0.94 0.91 0.92 0.93

API+Permission : DT 0.94 0.91 0.92 0.93

26 International Journal for Modern Trends in Science and Technology

API+Premision : Stacking Classifier 0.95 0.94 0.93 0.93

API : LR 0.95 0.94 0.94 0.93

API : SVC 0.96 0.96 0.95 0.94

API : KNN 0.96 0.96 0.95 0.95

API : RF 0.97 0.97 0.95 0.94

API : DT 0.96 0.95 0.95 0.94

API : Stacking Classifier 0.98 0.98 0.97 0.96

Permission : LR 0.91 0.96 0.87 0.79

Permission : SVC 0.91 0.95 0.87 0.80

Permission : KNN 0.90 0.92 0.86 0.80

Permission : RF 0.92 0.96 0.87 0.80

Permission : DT 0.92 0.96 0.87 0.80

Permission : Stacking Classifier 0.91 0.97 0.86 0.78

Table.6 Performance Evaluation Table - Malgenome Dataset

ML Model Accuracy Precision F1_score Recall

API+Permission : LR 0.98 0.97 0.97 0.96

API+Permission : SVC 0.98 0.97 0.97 0.97

API+Permission : KNN 0.97 0.97 0.95 0.94

API+Permission : RF 0.98 0.96 0.96 0.97

API+Permission : DT 0.97 0.94 0.95 0.96

API+Permission : Stacking Classifier 0.99 0.98 0.98 0.99

API : LR 0.98 0.97 0.98 0.98

API : SVC 0.99 0.98 0.98 0.98

API : KNN 0.98 0.97 0.97 0.97

API : RF 0.98 0.98 0.98 0.97

API : DT 0.98 0.97 0.97 0.97

API : Stacking Classifier 0.99 1.00 0.99 0.98

Permission : LR 0.93 0.91 0.90 0.90

Permission : SVC 0.94 0.95 0.91 0.88

Permission : KNN 0.94 0.93 0.91 0.89

Permission : RF 0.96 0.95 0.94 0.93

Permission : DT 0.96 0.95 0.94 0.93

Permission : Stacking Classifier 0.96 0.94 0.95 0.95

Fig.2 Graphical Comparison of Various Machine Learning Algorithms on CIC_MALDROID2020 Dataset Using the

Evaluation Metrics: F1-Score, Recall, Accuracy, and Precision.

27 International Journal for Modern Trends in Science and Technology

Fig.3 Comparative Graph of Various Machine Learning Algorithms on Drebin Dataset Using the Performance

Measures: F1-Score, Recall, Accuracy, and Precision.

Fig. 4 Visual representation comparing different machine learning algorithms on the Malgenome dataset based on

evaluation metrics such as F1-Score, Recall, Accuracy, and Precision

Accuracy is represented by blue, precision by red, recall

by green, and F1-Score by purple Fig (2to4). In

comparison to the other models, the API+Permission:

Stacking Classifier (CIC_MALDROID2020) & API:

Stacking Classifier shows superior results across all

evaluation metrics, attaining the highest scores. The

graphs above provide a clear visual representation of

these outcomes.
Fig 5: Home page for Android Malware Detection

Interfac

Fig.2 Graphical Comparison of Various Machine Learning Algorithms on CIC_MALDROID2020 Dataset Using the

Evaluation Metrics: F1-Score, Recall, Accuracy, and Precision.

28 International Journal for Modern Trends in Science and Technology

Fig 6: User Sign-in and Registration page

Fig 7: Login page for Android Malware Detection

System

Fig 8: Application Feature-Based User input page

Fig 9 : Predict result indicating Malware Detection

4. CONCLUSION

The efficiency of predictive algorithms for detecting

Android malware is demonstrated in this analysis.

Android Malware is demonstrated in this analysis. These

models showed strong capabilities in identifying

malicious apps, which is crucial for protecting Android

users. The stacking classifier, proved to be more effective

than individual algorithms. The approach of combining

multiple models enhanced the overall detection

accuracy, showcasing the power of ensemble

learning.Flask and SQLite are used to build a simple,

easy-to-use interface, enabling wider reach and usability.

The design supports user testing, validates inputs, and

enables smooth model predictions, thereby improving

practical usability and promoting adoption. The project

highlighted the significance of combining both API and

Permission features, whose combination was found to be

critical for improving malware detection, emphasizing

the importance of considering multiple static features in

analysis.The performance of machine learning

algorithms varied across different datasets, including

Drebin, Malgenome, and CIC_MALDROID2020

[36].This underscores the significance of selecting

datasets carefully and understanding for developing

accurate detection models.The models maintained an

equilibrium between achieving accuracy and reducing

false positives. This is essential as it ensures that while

detecting malware, legitimate apps are not mistakenly

flagged as threats, reducing inconvenience for users. The

outcomes of this project have broad implications.

Security professionals can use these improved detection

techniques to enhance cybersecurity. App developers

can better safeguard their apps against potential threats,

and end users benefit from increased protection against

Android malware, ultimately leading to a safer mobile

experience.

29 International Journal for Modern Trends in Science and Technology

5. FUTURE SCOPE

Further research could focus on improving the

instantaneous detection capabilities of the developed

framework system by continuously monitoring and

analyzing dynamic features. This would enable the

system to respond more effectively to evolving Android

malicious software attacks. Exploring techniques to

identify the key dynamic attributes for malware

detection can lead toward creating faster and more

precise models.Approaches to attribute selection, such as

mutual information or recursive feature elimination,

could be investigated. Extending the system to detect

behavioral anomalies in Android applications can

provide an additional layer of security. This involves

identifying deviations from expected behavior, which

could be indicative of malware. [7] As new types of

Android malicious software emerge, the framework

could be developed to adapt and update its models and

detection strategies. Regularly incorporating new threat

intelligence and updating the system is essential for

long-term effectiveness. Expanding the capabilities of

the system to encompass cross-platform malware

detection, including iOS and other mobile operating

systems, can provide a more holistic solution for mobile

security.

Conflict of interest statement

Authors declare that they do not have any conflict of

interest.

REFERENCES

[1] H. Menear, IDC Predicts Used Smartphone Market Will Grow

11.2% by 2024, IDC, 2021. [Online]. Available. Accessed: Oct. 30,

2022.

[2] D. Curry, Android Statistics, 2022. [Online]. Available. Accessed:

Oct. 30, 2022.

[3] O. Abendan, “Fake Apps Affect Android OS Users,” Trend Micro

Threat Encyclopedia, 2011. [Online]. Available. Accessed: Oct. 30,

2022.

[4] C. D. Vijayanand and K. S. Arunlal, ‘‘Impact of malware in modern

society,’’ J. Sci. Res. Develop., vol. 2, pp. 593–600, Jun. 2019.

[5] M. Iqbal, App Download Data, 2022. [Online]. Available. Accessed:

Oct. 30, 2022.

[6] K. Allix, T. Bissyand, Q. Jarome, J. Klein, R. State, and Y. L. Traon,

“Empirical assessment of machine learning-based malware

detectors for Android,” Empirical Softw. Eng., vol. 21, pp. 183–211,

Jun. 2016.

[7] Y. Zhou and X. Jiang, “Dissecting Android malware:

Characterization and evolution,” in Proc. IEEE Symp. Secur.

Privacy, May 2012, pp. 95–109.

[8] J. Scott, Signature Based Malware Detection is Dead, 2017. [Online].

Available. Accessed: Oct. 30, 2022.

[9] Q. M. Y. E. Odat, A Novel Machine Learning Approach for

Android Malware Detection Based on the Co-Existence, [Online].

Available. Accessed: Dec. 27, 2022.

[10] U. Shukla, ‘‘An Android malware detection technique based on

optimized permissions and API,’’ in Proc. Int. Conf. Inventive Res.

Comput. Appl. (ICIRCA), Jul. 2018, pp. 258– 263.

[11] Dex2jar—Tools to Work With Android .dex & Java .class Files,

2018. [Online]. Available. Accessed: Oct. 30, 2022.

[12] AndroZoo, [Online]. Available. Accessed: Jul. 30, 2022

[13] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck,

“Drebin: Effective and explainable detection of Android malware

in your pocket,” in Proc. NDSS, Feb. 2014, pp. 23–26.

[14] VirusShare, [Online]. Available. Accessed: Jul. 30, 2022.

[15] H. Cheng, X. Yan, J. Han, and C.-W. Hsu, “Discriminative frequent

pattern analysis for effective classification,” in Proc. IEEE 23rd Int.

Conf. Data Eng., Apr. 2007, pp. 716–725.

[16] M. Parkour, Contagio Mini-Dump, [Online]. Available. Accessed:

Jul. 30, 2022.

[17] Malgenome Project, [Online]. Available. Accessed: Jul. 30, 2022.

[18] C.-FC.-F. Tsai, Y.-C. Lin, and C.-P. Chen, “A new fast algorithm for

mining association rules in large databases,” in Proc. IEEE Int.

Conf. Syst., Man Cybern., Oct. 1994, pp. 487–499.

[19] A. Lab, AMD Dataset, 2017. [Online]. Available. Accessed: Oct. 30,

2022.

[20] V. Avdiienko, “Mining apps for abnormal usage of sensitive data,”

in Proc. IEEE/ACM 37th Int. Conf. Softw. Eng., vol. 1, May 2015,

pp. 426–436.

[21] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-level

features for robust malware detection in Android,” in Security and

Privacy in Communication Networks, T. Zia, A. Zomaya, V.

Varadharajan, and M. Mao, Eds. Cham, Switzerland: Springer,

2013, pp. 86–103.

[22] E. Odat and Q. M. Yaseen, “A novel machine learning approach for

Android malware detection based on the co-existence of features,”

IEEE Access, vol. 11, pp. 15471–15484, Feb. 2023, doi:

10.1109/ACCESS.2023.3244656.

