As per UGC guidelines an electronic bar code is provided to secure your paper

b (G
R
Check for i‘u""i

updates ™"

International Journal for Modern Trends in Science and Technology
Volume 12, Issue 01, pages 20-29.

ISSN: 2455-3778 online

Auvailable online at: http://www.ijmtst.com/voll2issue01.html

DOL: https://doi.org/10.5281/zenodo.18362290

A Novel Approach for Detecting Android Malware
Through Co-Occurrence using Machine Learning

Bandela Charan! | Dr. K. Naga Sujatha?

'Department of Electrical and Electronics Engineering INTUH University College of Engineering Science and Technology Hyderabad, T.S,
India-500085

charanbandelal23@gmail.com

2Professor, Department of Electrical and Electronics Engineering INTUH University College of Engineering Science and Technology
Hyderabad, T.S, India-500085

kns@jntuh.ac.in

To Cite this Article
Bandela Charan & Dr. K. Naga Sujatha (2026). A Novel Approach for Detecting Android Malware Through

Co-Occurrence using Machine Learning. International Journal for Modern Trends in Science and Technology, 12(01),
20-29. https://doi.org/10.5281/zenod0.18362290

Article Info
Received: 28 December 2025; Revised: 16 January 2026; Accepted: 20 January 2026.

Copyright © The Authors ; This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

KEYWORDS ABSTRACT

Co-existence, Traditional approaches to Android malware detection primarily depend on signature-based
FP-Growth, methods. While these methods have been widely adopted, they fall short when it comes to
Machine learning algorithms, identifying newly emerging malware variants that are not yet present in known databases.
Malware”. To address this limitation, this project proposes a novel machine learning-based technique

emphasizing static features, specifically permissions and API calls, within Android
applications. Unlike conventional detection techniques, which typically involve static
analysis or runtime behavior monitoring, our approach emphasizes the extraction of
meaningful patterns from the static features of APK files. Static analysis alone often lacks
comprehensive coverage, leaving security gaps. Therefore, this method is designed to
overcome these gaps by investigating the co- existence patterns of permissions and APIs,
which are often indicative of malicious behavior when compared to legitimate applications.
To implement this, a new dataset will be constructed by analyzing Android APK samples
from existing reputable datasets. This dataset will capture various combinations of
permissions and API calls along with their frequencies. The Frequent Pattern Growth
(FP-Growth) will be employed to identify the most significant co-occurrence patterns
among these features, which act as reliable indicators for differentiating between harmful
and benign applications. Subsequently, these extracted features will be fed into various
conventional machine learning algorithms to evaluate their effectiveness in malware

detection. The primary objective is to enhance the accuracy, robustness, and generalizability

e
20 International Journal for Modern Trends in Science and Technology

http://www.ijmtst.com/vol12issue01.html
https://doi.org/10.5281/zenodo.18362290
mailto:charanbandela123@gmail.com
mailto:kns@jntuh.ac.in
https://doi.org/10.5281/zenodo.18362290
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.18362290
http://www.ijmtst.com/

of malware classification models. Through leveraging the power of feature co-existence
analysis and machine learning, this approach is expected to outperform several
contemporary state-of-the-art methods. The entire implementation will be carried out using

either Windows or Linux operating systems, with Python as the primary programming

language for dataset creation, feature extraction, and model evaluation.

1. INTRODUCTION

The smartphone industry has witnessed exponential
growth over the past decade, with global sales
anticipated to surpass 351 million units by 2024 [1].
Among mobile operating systems, Android leads the
market with a user base exceeding 2.5 billion across
more than 190 countries [2]. The platform’s openness
and flexibility have enabled rich user experiences but
have also exposed it to significant security threats.
Android,

exploiting its open-source nature to create and distribute

Malware developers increasingly target
harmful applications [3]. These threats are often shared
via trusted app marketplaces like the official Android
marketplace and various external app repositories such
as AppChina and AppBrain, where monitoring
mechanisms are comparatively weak [6], [13]. Studies
have revealed that nearly 50% of apps on AppChina and
22% on Google Play Store exhibited malicious behavior
[6].

Conventional malware prevention techniques have
depended on signature-based detection systems that
match new applications against known malware
patterns [7]. While effective against existing threats,
these systems fail to identify novel, obfuscated, or
repackaged malware [8]. For example, obfuscation
techniques can effectively hide malware features,
As a

response to these limitations, researchers have shifted

rendering traditional scanners ineffective [9].

focus toward machine learning (ML)-based solutions.
These techniques can identify malicious applications
based on patterns in static or dynamic features, even
when traditional indicators are hidden or altered [10].
Machine learning-driven identification of malicious
software may be broadly divided into static and
dynamic approaches. Static analysis examines code
without executing the app, focusing on features like
requested permissions, API calls, and intents [11], [12].In
Conversely, dynamic analysis entails executing and
observing the software within a regulated environment
to study its real-time activities and detect any malicious
activities [13]. However, static features often overlap

between benign and malicious apps, making it difficult

to distinguish between them. This has led to the
incorporation of feature selection techniques to extract
the most relevant and non-redundant attributes [14],
[15]. Among these, the co-occurrence of characteristics
like access rights and API invocations has emerged as a
novel indicator of malicious behavior [22].Several
studies have proposed enhanced detection methods by
integrating multiple feature vectors. Techniques that use
combinations of static features, such as permissions and
APIs, have achieved notable accuracy. For instance,
Tiwari and Shukla used optimized permissions and APIs
to achieve detection accuracies above 97% [10]. Similarly,
Arp et al. introduced DREBIN, a static analysis tool
capable of detecting malware directly on the device,
identifying 94% of threats with minimal false positives
[13]. Despite these successes in controlled environments,
real-world = performance remains inconsistent,
highlighting the challenge of creating universally
effective detection systems [21], [22].

To address these gaps, recent research has focused on
developing models that evaluate the interdependence of
features rather than treating them in isolation. This
includes the use of frequent pattern growth (FP- Growth)
algorithms for mining relevant co- occurrence patterns in
large datasets [18]. Combining such mining techniques
with ML classifiers, including ensemble models like
stacking classifiers, offers promising improvements in
detection performance.These ensemble approaches
utilize diverse classifiers—such as Random Forest,
LightGBM, and MLP —and leverage them for enhancing
generalization and reducing error rates [19], [20].

In this context, our study proposes a novel Al-driven
framework designed to identify malicious software
within the Android platform, leveraging the co-
occurrence of static features.By integrating optimized
feature selection and ensemble learning, the system
enhances accuracy and robustness across multiple
including DREBIN, CIC-
MALDROID2020, and Malgenome. The ultimate goal is

to build a lightweight, accurate, and practical solution

benchmark datasets

that addresses current gaps in Android malware

detection systems.

21 International Journal for Modern Trends in Science and Technology

2. METHODOLOGY

A. Proposed Work:

The model proposed in this research introduces a
specialized computational framework for detecting
malicious Android applications that emphasizes the
importance of co-occurring permissions and APIs in
accurately discriminating between trustworthy and
malicious software. This model demonstrates superior
accuracy compared to existing approaches when
evaluated on well-known datasets such as Drebin,
CIC_MALDROID2020, and Malgenome [9], [13], [21],
with the core objective of enhancing Android security
and safeguarding user privacy. To achieve this, a
Stacking Classifier has been implemented, combining
the predictive performance of Multi-Layer Perceptron
(MLP),Random Forest and LightGBM classifiers, which
collectively enhance feature extraction and improve
overall prediction accuracy. Furthermore, a user-friendly
system was developed utilizing the Flask framework in
combination with SQLite, supporting secure user

authentication through sign-up =~ and sign-in

functionalities while enabling wusers to submit
applications for analysis and receive malware detection
results efficiently. This comprehensive design makes the
system practical, reliable, and well- suited for real-world

Android security applications.

B. System Architecture:

The architecture of the proposed system begins with a
dataset consisting of Android applications, where the
attributes are derived based on various co-occurrence
combinations of permissions and APIs [4], [5], [7].The
dataset is systematically partitioned into two seperate
divisions,,namely a training dataset and a testing
dataset. The training dataset acts as the foundation for
constructing a predictive modeling framework (KNN,
SVM, RF, DT, LR and extension- stacking classifier).
These models are specifically designed to accurately
distinguish safe applications from malicious ones. Once
the models are trained,the performance and
effectiveness is assessed using the testing set, ensuring
the models are capable of accurately classifying
previously unseen applications based on the learned

patterns of feature co-occurrence.

- Extension-Stacking

Classifier
Logistic Regression
KNN
SVM
Random Forest
Decision Tree

Building Model
Using Machine
Learning Algorithms

Training L

D"‘“‘ﬂ:‘ Dataset
:m“'"' o~ Splitting dataset into s
Sl training and testing ™
as Testing pmp<” Model >
Dataset S -

features
Benign/Safe |

Fig 1 Proposed architecture

C. Dataset collection:
(i)DREBIN

The Drebin dataset is among the most well-known and
extensively utilized datasets for Android malware
detection and research, offering a substantial collection
of both benign and malicious Android applications. Its
broad size and diversity make it a popular standard for
evaluating malware detection models, as it supports the
development of more robust and generalizable machine
learning solutions [9], [13], [25]. In this work, the Drebin
dataset has been utilized along with various feature
combinations to strengthen the malware detection
process. To provide an initial understanding of the
dataset, the top five records corresponding to each
feature combination are displayed, clearly showing the
structure and the number of columns involved in the

analysis.

Table 1: Drebin datasets
SEND_SMS READ_PHONE_STATE GET_ACCOUNTS RECEIVE_SMS READ_SMS USE_CREDENTIALS MANAGE

0 1 1 0 0 0 0
1 1 1 0 1 1 0
2 1 1 0 0 0 0

5rows x 182 columns

transact onServiceConnected bindService attachinterface SenviceConnection android.os Binder Ljavalang Class.getCanonic

0 0 0 0 0 0 0
1 0 0 0 0 0 0

0 0 0 0 0 0

5§ 1ows x 73 columns

22 International Journal for Modern Trends in Science and Technology

SEND_SMS READ_PHONE_STATE GET_ACCOUNTS RECEIE_SMS READ_SMS USE_CREDENTIALS MANAGE_ACCOUNTS

0 1 1 0 0 0 0 0
1 1 1 0 1 1 0 0
2 1 1 0 0 0 0 0
3 0 1 0 0 { 0 0
4 0 1 0 0 0 0 0
5 1ows x 10 columns

(i) MALGENOME

The Malgenome dataset is especially chosen to contain
a broad spectrum of malicious software specimens,
thereby serving as a significant resource for focused
malware analysis and research. Unlike broader datasets,
Malgenome offers specialized samples that complement
datasets like Drebin by providing targeted examples for
the development and assessment of malware
models.Within this

Malgenome dataset has been utilized with various

identification research, the
feature combinations to enhance the accuracy of
malware detection [9], [17]. To illustrate the structure of
the dataset, the top five rows for each feature
combination are presented, allowing a clear view of the
dataset’s attributes and the number of columns involved

in the analysis.

Table 2: Malgenome datasets
READ_SMS WRITE_SMS READ_PHONE_STATE GET ACCOUNTS SEND_SMS WRITE_APN_SETTINGS RECEIVE_SMS USE.

0 0 0 { 0 0 0 0
1 f 0 1 0 f 0 0
2 0 0 0 0 f 0 1
3 f { 1 0 f f 1
4 f f { 0 { f 1
5§ 1ows 182 columng

transact bindService onServiceConnected ServiceConnection android.osBinder attachinterface TelephonyManager getSubs

¢ o0 0 0 0 0
{0 0 0 0 0 0

2 0 0 0

3 0 0 0 0 0 0

4 1

5 rows x 73 columns

READ_SMS WRITE_SMS READ_PHONE_STATE GET ACCOUNTS SEND_SMS WRITE_APN_SETTINGS RECENE_SMS

0 0 0 1 0 0 0 0
{ 1 0 1 0 { 0 0
2 0 0 0 0 1 0 1
3 1 1 f 0 { ’
4 1 1 1 0 1 1
5 rows x 110 columns

(iii) CIC_MALDROID2020
CIC_MALDROID2020 is provided by the Canadian
Institute for Cybersecurity (CIC) and is known for its
size, recency, diversity, and comprehensiveness.
Similarly, we have used CIC_MALDROID2020 dataset
with these feature combinations. We are displaying top 5
rows of the data with each feature combination here. and

we can see the no. columns present.

Table 3: CIC_MALDROID2020 datasets
android.permission.RECORD_AUDIO - android.permission. MODIFY_AUDIO_SETTINGS android.permission. WRITE,

0 1 !
1 0 0
2 0 0
3 0 0
4 0 0
5 rows x 894 columns

transact onServiceConnected bindService attachinterface ServiceConnection Ljava.lang.Class.getCanonicalName android.os

0 0 0 0 0 0 0
i 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 1 0 1 0
4 0 0 0 0 0 0
§rows x 70 columns

android.permission RECORD_AUDIO android.permission. MODIFY_AUDIO_SETTINGS ' android.permission.WRITE_SETTINGS andi

0 1 1 1
i 0 0 0

2 0 0 0
3 0 0 0
4 0 0 0
5 rows x 1634 columns

23 International Journal for Modern Trends in Science and Technology

D. Data Processing:

Data processing includes converting unprocessed data
into valuable information for businesses. Generally,data
scientists often handle data by gathering, systematizing,
processing, confirming, scrutinizing and transforming it
into easily understandable presentations like texts or
graphs.Data processing can be accomplished through
three primary approaches: manual, mechanical, and
electronic. The objective of this process is to enhance the
usefulness of information and support more effective
strategic choices.This allows organizations to refine their
operations and take prompt, evidence- based actions that
shape their long-term direction. Computerized
information handling systems, supported by digital
applications, are instrumental in enhancing
efficiency.This capability enables the transformation of
extensive datasets, including big data, into actionable
insights that support decision- making and process

quality control.

E. Feature selection:

It refers to the technique for recognizing and retaining
the key attributes within a dataset with the aim of
boosting the effectiveness of machine learning
algorithms.As datasets steadily increase in volume and
structural complexity, systematically minimizing the
number of features they contain becomes crucial.The
main of feature selection is to strengthen the predictive
capability of machine learning models while also
minimizing the computing resources required for
training and evaluation.

Feature selection is an essential stage in the wider field
of feature engineering. It focuses on eliminating
irrelevant or redundant features, narrowing down the
dataset to include only those variables that contribute
meaningfully to the model’s predictive capability.By
performing attribute selection before training, we can
ensure that the machine learning model works more
efficiently and effectively, rather than depending on the

model itself to identify which features matter most.

F. Algorithms:

Logistic Regression is a commonly used classification
approach designed to forecast the probability of a given
input being part of a specific category.This algorithm
utilizes a sigmoid (logistic) mapping to transform input
features to a likelihood value bounded between 0 and

1.By applying a predefined threshold, the algorithm
assigns the data point into classes determined by this
likelihood, selecting one of two or more possible
outcomes.Throughout the training phase, the learning
system optimizes its parameters to represent the data
effectively, enabling accurate and reliable classifications.
(SVQO)

supervised learning method that determines the optimal

A Support Vector Classifier represents
separating plane to classify data. By using key data
points known as support vectors, it maximizes the
distance between classes, allowing it to handle both
binary and multi-class classification effectively
K-Nearest Neighbors (KNN) is

supervised learning method

a fundamental
in both

regression and classification tasks. It forecasts results

employed

through the identification of K closest instances and
using majority voting or averaging. While easy to
implement, its accuracy depends on the choice of K and
it may face difficulties when handling high dimensional
data lacking proper preprocessing [30].

Random Forest represents an ensemble-based
supervised learning approach that builds a collection of
decision trees to produce outcomes. It operates by
training every tree with randomly selected subsets of the
dataset and then combining their outputs through
averaging or voting. This approach enhances the
reliability of results, reduces overfitting, and ensures
reliable results for both classification and regression
applications.

A Decision Tree is a machine learning algorithm
which forecasts results by repeatedly dividing dataset
into smaller subsets according to the most important
attributes. It forms a hierarchical structure where nodes
represent features and branches indicate possible
decisions.This clear and interpretable structure renders it
effective across diverse classification and prediction
tasks.

A Stacking Classifier represents an ensemble-based
learning approach which integrates the outputs from
several base classifiers, such as Multi-Layer Perceptron
(MLP), Random Forest (RF),and LightGBM, to generate a
more precise overall outcome.This method takes
advantage of the distinct capabilities of individual
models to enhance overall performance.In this approach,
the base models undergo training on the dataset, after
which their predicted outputs are provided as inputs to

the meta- learner, which learns the optimal way to merge

24 International Journal for Modern Trends in Science and Technology

these outputs to produce the final result.Stacking is a
powerful technique used for improving prediction
reliability and is commonly employed in machine

learning for various applications.

3. RESULTS ANALYSIS

A. Accuracy: The accuracy refers to the capability of a test
to correctly distinguish between diseased and healthy
cases.To determine the accuracy, it is essential to
calculate the ratio of accurately identified positive and

negative cases in comparison with the overall number of

instances assessed. Mathematically, this can be
expressed as follows:
Accuracy = _ TR+TN 1)

TP+FP+TN+FN

B. Precision: Precision expresses the share of actual
positive outcomes within the set of samples the model
designates as positive.Hence, the formula used to

compute precision is given by:

True Positive \

Precision = — — ()
True Positive +False Positive

C. Recall: Recall serves as an evaluation measure in
machine learning that assesses how effectively a model

identifies every applicable instance within a specific

class. It is calculated as the proportion between correctly
predicted positive cases and the overall number of true
positives, reflecting how effectively the model identifies
every relevant instance belonging to that category.

TP
TP + FN (3)

D. F1-Score: F1 Score is a performance measure in

Recall =

machine learning that integrates precision and recall to
evaluate a model’s effectiveness. It merges precision and
recall into one unified value, offering a trade-off between
the two. In contrast, the accuracy metric only considers
the overall count of correct outcomes generated by a

model across the entire dataset

Recall X Precision
F1Score = 2 + —— =TT 4 10 (4)
Recall+Precision

Table (4 to 6) assess how well each algorithm performs
based on the metrics of Accuracy, Precision, Recall, and
all the

Classifier

F1-Score.Across evaluation criteria
API+Permission: Stacking
(CIC_ZMALDROID2020) & APL

consistently outperforms all remaining algorithms. The

Stacking Classifier

tables also provide a comparative evaluation of metrics

for the other algorithms.

Table.4 Performance Evaluation Table - CIC_MALDROID2020

ML Model Accuracy Precision F1_score Recall
API+Permission : LR 0.99 0.98 0.98 0.99
API+Permission : SVC 0.99 0.98 0.99 1.00
API+Permission : KNN 097 0.94 0.97 0.99
API+Permission : RF 097 097 0.97 0.97
API+Permission : DT 0.95 097 0.95 0.94
API+Permission : Stacking Classifier 1.00 1.00 1.00 1.00
API: LR 0.95 0.94 0.95 0.97
API: SVC 0.96 0.94 0.96 0.97
API: KNN 0.94 0.93 0.94 0.95
API: RF 0.94 0.94 0.94 0.94
APIL: DT 0.95 0.95 0.94 0.94
API : Stacking Classifier 097 0.98 0.97 0.96
Permission : LR 0.95 0.93 0.95 0.97
Permission : SVC 0.95 0.92 0.95 0.97
Permission : KNN 0.94 0.90 0.94 0.99
Permission : RF 0.95 0.93 0.95 0.97
Permission : DT 0.95 0.94 0.95 0.95
Permission : Stacking Classifier 0.99 0.98 0.9 1.00
Table.5 Performance Evaluation Table - Drebin Dataset
ML Model Accuracy Precision F1_score Recall
API+Permission : LR 0.93 0.89 0.91 0.92
API+Permission : SVC 094 091 0.92 0.93
API+Permission : KNN 094 0.90 0.92 0.93
API+Permission : RF 094 091 0.92 0.93
API+Permission : DT 0.94 091 0.92 0.93

25 International Journal for Modern Trends in Science and Technology

API+Premision : Stacking Classifier 0.95 0.94 0.93 0.93
API:IR 0.95 0.94 0.94 0.93
API:SVC 0.96 0.96 0.95 0.94
API: KNN 0.96 0.96 0.95 0.95
API: RF 0.97 097 0.95 0.94
APIL: DT 0.96 0.95 0.95 0.94
API : Stacking Classifier 0.98 0.98 0.97 0.96
Permission : LR 091 0.96 0.87 0.79
Permission : SVC 091 0.95 0.87 0.80
Permission : KNN 0.90 0.92 0.86 0.80
Permission : RF 0.92 0.96 0.87 0.80
Permission : DT 0.92 0.96 0.87 0.80
Permission : Stacking Classifier 091 097 0.86 0.78
Table.6 Performance Evaluation Table - Malgenome Dataset
ML Model |Accuracy Precision F1_score Recall
API+Permission : LR 0.98 0.97 0.97 0.96
API+Permission : SVC 0.98 0.97 0.97 0.97
API+Permission : KNN 0.97 0.97 0.95 0.94
API+Permission : RF 0.98 0.96 0.96 0.97
API+Permission : DT 0.97 0.94 0.95 0.96
API+Permission : Stacking Classifier 0.99 0.98 0.98 0.99
API:LR 0.98 0.97 0.98 0.98
API:SVC 0.99 0.98 0.98 0.98
API: KNN 0.98 0.97 0.97 0.97
API:RF 0.98 0.98 0.98 0.97
API:DT 0.98 0.97 0.97 0.97
API : Stacking Classifier 0.99 1.00 0.99 0.98
Permission : LR 0.93 0.91 0.90 0.90
Permission : SVC 0.94 0.95 0.91 0.88
Permission : KNN 0.94 0.93 091 0.89
Permission : RF 0.96 0.95 0.94 0.93
Permission : DT 0.96 0.95 0.94 0.93
Permission : Stacking Classifier 0.96 0.94 0.95 0.95
1.02
1
0.98 H
0.96 | i .
0.94 3 - . | 1 =
0.92 il 'r:: | 1 || | | |
0.9 I 1 | 1 1 | || | 1 |
0.88 | | 1 | | || N |
I | || | | | | || |
0.5 | | | | | I |
@gz'*“;\gz\“*‘;f@'f@f-\‘“‘ g\ga‘* . é&@‘g’ ' @_?}@?& & & Q{z\«*‘"'b' & q«-‘\;\‘__ E}@\P&
&)

B Accuracy M Precision M f1_score B Recall

Fig.2 Graphical Comparison of Various Machine Learning Algorithms on CIC_MALDROID2020 Dataset Using the

Evaluation Metrics: F1-Score, Recall, Accuracy, and Precision.

26 International Journal for Modern Trends in Science and Technology

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

s
.co& (\9&‘ '-‘§ o\“ ,<~ L?‘@:g\& = =3
P) = & P o <
& &F & & & &
3% S & &L & F
X Re)
F & & ¢ ¢ &
@o"
R

< N o3

R 5\5‘ S &
§ @ 'a 2 o(‘ o o° &£
OF T o™ ST P g &5
ECOR i C R < & <&
& < &
JE E o F < o
& S
~?4§ 3

B Accuracy M Precision M f1_score B Recall

Fig.3 Comparative Graph of Various Machine Learning Algorithms on Drebin Dataset Using the Performance

Measures: F1-Score, Recall, Accuracy, and Precision.

1.02

0.98

0.96
0.94
0.92

0.9
0.88
0.86
0.84
0.82

5 & \3‘
ol ~o(‘-<?§/, <~ ‘;C\\ zf(v (‘\’5’&
& 6;:9 & & & <&
* & & L % &
N & X
& & SR S 3 705['}
@
P
<
@\,sz"f

‘S‘ \ ao P e p & \’b
&L & \s;? -gé) @6.9 <~‘°9 é‘

% &
q.’f’& Q@ & & E &° Q& Q& 9’5’*
o %
& F
F

B Accuracy B Precision M f1_score M Recall

Fig. 4 Visual representation comparing different machine learning algorithms on the Malgenome dataset based on

evaluation metrics such as F1-Score, Recall, Accuracy, and Precision

Accuracy is represented by blue, precision by red, recall
by green, and F1-Score by purple Fig (2to4). In
comparison to the other models, the API+Permission:
(CIC_MALDROID2020) & APIL

Stacking Classifier shows superior results across all

Stacking Classifier

evaluation metrics, attaining the highest scores. The
graphs above provide a clear visual representation of

these outcomes.

© O wran Ao wD 0O

WELCOME TO DASHBIARD

" SN

Fig 5: Home page for Android Malware Detection

Interfac

27 International Journal for Modern Trends in Science and Technology

O SignIn

,,,,,,,,

Already have an account?Sign in

Fig 6: User Sign-in and Registration page

©SignlIn

admin

Register here!Sign Up

Fig 7: Login page for Android Malware Detection
System
KILL_BACKGROUND_PROCESSES:

o

CHANGE_NETWORK_STATE:

(4]

transact:
o
Ljava.lang.Class.getCanonicalName:
0
Ljava.lang.Class.getMethods:
0
Landroid.content.Context.registerReceiver
0
getBinder:
0
createSubprocess:

Fig 8: Application Feature-Based User input page

)4
.
180

. ‘@‘i

Result: Malware Android Attack is Detected!

Fig 9 : Predict result indicating Malware Detection

4. CONCLUSION

The efficiency of predictive algorithms for detecting
Android malware is demonstrated in this analysis.
Android Malware is demonstrated in this analysis. These
models showed strong capabilities in identifying
malicious apps, which is crucial for protecting Android
users. The stacking classifier, proved to be more effective
than individual algorithms. The approach of combining
the overall detection

multiple models enhanced

accuracy, showcasing the power of ensemble
learning.Flask and SQLite are used to build a simple,
easy-to-use interface, enabling wider reach and usability.
The design supports user testing, validates inputs, and
enables smooth model predictions, thereby improving
practical usability and promoting adoption. The project
highlighted the significance of combining both API and
Permission features, whose combination was found to be
critical for improving malware detection, emphasizing
the importance of considering multiple static features in
analysis.The performance of machine learning
algorithms varied across different datasets, including
Drebin, CIC_MALDROID2020

[36].This underscores the significance of selecting

Malgenome, and
datasets carefully and understanding for developing
accurate detection models.The models maintained an
equilibrium between achieving accuracy and reducing
false positives. This is essential as it ensures that while
detecting malware, legitimate apps are not mistakenly
flagged as threats, reducing inconvenience for users. The
outcomes of this project have broad implications.
Security professionals can use these improved detection
techniques to enhance cybersecurity. App developers
can better safeguard their apps against potential threats,
and end users benefit from increased protection against
Android malware, ultimately leading to a safer mobile

experience.

28 International Journal for Modern Trends in Science and Technology

5. FUTURE SCOPE

Further research could focus on improving the
instantaneous detection capabilities of the developed
framework system by continuously monitoring and
analyzing dynamic features. This would enable the
system to respond more effectively to evolving Android
malicious software attacks. Exploring techniques to
identify the key dynamic attributes for malware
detection can lead toward creating faster and more
precise models.Approaches to attribute selection, such as
mutual information or recursive feature elimination,
could be investigated. Extending the system to detect
behavioral anomalies in Android applications can
provide an additional layer of security. This involves
identifying deviations from expected behavior, which
could be indicative of malware. [7] As new types of
Android malicious software emerge, the framework
could be developed to adapt and update its models and
detection strategies. Regularly incorporating new threat
intelligence and updating the system is essential for
long-term effectiveness. Expanding the capabilities of
the system to encompass cross-platform malware
detection, including iOS and other mobile operating
systems, can provide a more holistic solution for mobile

security.

Conflict of interest statement
Authors declare that they do not have any conflict of

interest.

REFERENCES

[1] H. Menear, IDC Predicts Used Smartphone Market Will Grow
11.2% by 2024, IDC, 2021. [Online]. Available. Accessed: Oct. 30,
2022.

[2] D. Curry, Android Statistics, 2022. [Online]. Available. Accessed:
Oct. 30, 2022.

[3] O. Abendan, “Fake Apps Affect Android OS Users,” Trend Micro
Threat Encyclopedia, 2011. [Online]. Available. Accessed: Oct. 30,
2022.

[4] C.D. Vijayanand and K. S. Arunlal, “Impact of malware in modern
society,”” J. Sci. Res. Develop., vol. 2, pp. 593-600, Jun. 2019.

[5] M.Igbal, App Download Data, 2022. [Online]. Available. Accessed:
Oct. 30, 2022.

[6] K. Allix, T. Bissyand, Q. Jarome, J. Klein, R. State, and Y. L. Traon,
“Empirical assessment of machine learning-based malware
detectors for Android,” Empirical Softw. Eng., vol. 21, pp. 183-211,
Jun. 2016.

[71 Y. Zhou and X. Jiang,
Characterization and evolution,” in Proc. IEEE Symp. Secur.
Privacy, May 2012, pp. 95-109.

“Dissecting Android malware:

[8] J. Scott, Signature Based Malware Detection is Dead, 2017. [Online].
Available. Accessed: Oct. 30, 2022.

[9] Q. M. Y. E. Odat, A Novel Machine Learning Approach for
Android Malware Detection Based on the Co-Existence, [Online].
Auvailable. Accessed: Dec. 27, 2022.

[10] U. Shukla, “An Android malware detection technique based on
optimized permissions and APL" in Proc. Int. Conf. Inventive Res.
Comput. Appl. ICIRCA), Jul. 2018, pp. 258—263.

[11] Dex2jar—Tools to Work With Android .dex & Java .class Files,
2018. [Online]. Available. Accessed: Oct. 30, 2022.

[12] AndroZoo, [Online]. Available. Accessed: Jul. 30, 2022

[13] D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, and K. Rieck,
“Drebin: Effective and explainable detection of Android malware
in your pocket,” in Proc. NDSS, Feb. 2014, pp. 23-26.

[14] VirusShare, [Online]. Available. Accessed: Jul. 30, 2022.

[15] H. Cheng, X. Yan, J. Han, and C.-W. Hsu, “Discriminative frequent
pattern analysis for effective classification,” in Proc. IEEE 23rd Int.
Conf. Data Eng., Apr. 2007, pp. 716-725.

[16] M. Parkour, Contagio Mini-Dump, [Online]. Available. Accessed:
Jul. 30, 2022.

[17] Malgenome Project, [Online]. Available. Accessed: Jul. 30, 2022.

[18] C.-FC.-F. Tsai, Y.-C. Lin, and C.-P. Chen, “A new fast algorithm for
mining association rules in large databases,” in Proc. IEEE Int.
Conf. Syst., Man Cybern., Oct. 1994, pp. 487-499.

[19] A. Lab, AMD Dataset, 2017. [Online]. Available. Accessed: Oct. 30,
2022.

[20] V. Avdiienko, “Mining apps for abnormal usage of sensitive data,”
in Proc. IEEE/ACM 37th Int. Conf. Softw. Eng., vol. 1, May 2015,
pp. 426—436.

[21] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-level
features for robust malware detection in Android,” in Security and
Privacy in Communication Networks, T. Zia, A. Zomaya, V.
Varadharajan, and M. Mao, Eds. Cham, Switzerland: Springer,
2013, pp. 86-103.

[22] E.Odat and Q. M. Yaseen, “A novel machine learning approach for

Android malware detection based on the co-existence of features,”

IEEE Access, vol. 11, pp. 15471-15484, Feb. 2023, doi:

10.1109/ACCESS.2023.3244656.

29 International Journal for Modern Trends in Science and Technology

