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Traditional approaches to Android malware detection primarily depend on signature-based 

methods. While these methods have been widely adopted, they fall short when it comes to 

identifying newly emerging malware variants that are not yet present in known databases. 

To address this limitation, this project proposes a novel machine learning-based technique 

emphasizing static features, specifically permissions and API calls, within Android 

applications. Unlike conventional detection techniques, which typically involve static 

analysis or runtime behavior monitoring, our approach emphasizes the extraction of 

meaningful patterns from the static features of APK files. Static analysis alone often lacks 

comprehensive coverage, leaving security gaps. Therefore, this method is designed to 

overcome these gaps by investigating the co- existence patterns of permissions and APIs, 

which are often indicative of malicious behavior when compared to legitimate applications. 

To implement this, a new dataset will be constructed by analyzing Android APK samples 

from existing reputable datasets. This dataset will capture various combinations of 

permissions and API calls along with their frequencies. The Frequent Pattern Growth 

(FP-Growth) will be employed to identify the most significant co-occurrence patterns 

among these features, which act as reliable indicators for differentiating between harmful 

and benign applications. Subsequently, these extracted features will be fed into various 

conventional machine learning algorithms to evaluate their effectiveness in malware 

detection. The primary objective is to enhance the accuracy, robustness, and generalizability 
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of malware classification models. Through leveraging the power of feature co-existence 

analysis and machine learning, this approach is expected to outperform several 

contemporary state-of-the-art methods. The entire implementation will be carried out using 

either Windows or Linux operating systems, with Python as the  primary  programming  

language  for  dataset creation, feature extraction, and model evaluation. 

 

1. INTRODUCTION 

The smartphone industry has witnessed exponential 

growth over the past decade, with global sales 

anticipated to surpass 351 million units by 2024 [1]. 

Among mobile operating systems, Android leads the 

market with a user base exceeding 2.5 billion across 

more than 190 countries [2]. The platform’s openness 

and flexibility have enabled rich user experiences but 

have also exposed it to significant security threats. 

Malware developers increasingly target Android, 

exploiting its open-source nature to create and distribute 

harmful applications [3]. These threats are often shared 

via trusted app marketplaces like the official Android 

marketplace and various external app repositories such 

as AppChina and AppBrain, where monitoring 

mechanisms are comparatively weak [6], [13]. Studies 

have revealed that nearly 50% of apps on AppChina and 

22% on Google Play Store exhibited malicious behavior 

[6]. 

Conventional malware prevention techniques have 

depended on signature-based detection systems that 

match new applications against known malware 

patterns [7]. While effective against existing threats, 

these systems fail to identify novel, obfuscated, or 

repackaged malware [8]. For example, obfuscation 

techniques can effectively hide malware features, 

rendering traditional scanners ineffective [9]. As a 

response to these limitations, researchers have shifted 

focus toward machine learning (ML)-based solutions. 

These techniques can identify malicious applications 

based on patterns in static or dynamic features, even 

when traditional indicators are hidden or altered [10]. 

Machine learning-driven identification of malicious 

software may be broadly divided into static and 

dynamic approaches. Static analysis examines code 

without executing the app, focusing on features like 

requested permissions, API calls, and intents [11], [12].In 

Conversely, dynamic analysis entails executing and 

observing the software within a regulated environment 

to study its real-time activities and detect any malicious 

activities [13]. However, static features often overlap 

between benign and malicious apps, making it difficult 

to distinguish between them. This has led to the 

incorporation of feature selection techniques to extract 

the most relevant and non-redundant attributes [14], 

[15]. Among these, the co-occurrence of characteristics 

like access rights and API invocations has emerged as a 

novel indicator of malicious behavior [22].Several 

studies have proposed enhanced detection methods by 

integrating multiple feature vectors. Techniques that use 

combinations of static features, such as permissions and 

APIs, have achieved notable accuracy. For instance, 

Tiwari and Shukla used optimized permissions and APIs 

to achieve detection accuracies above 97% [10]. Similarly, 

Arp et al. introduced DREBIN, a static analysis tool 

capable of detecting malware directly on the device, 

identifying 94% of threats with minimal false positives 

[13]. Despite these successes in controlled environments, 

real-world performance remains inconsistent, 

highlighting the challenge of creating universally 

effective detection systems [21], [22]. 

To address these gaps, recent research has focused on 

developing models that evaluate the interdependence of 

features rather than treating them in isolation. This 

includes the use of frequent pattern growth (FP- Growth) 

algorithms for mining relevant co- occurrence patterns in 

large datasets [18]. Combining such mining techniques 

with ML classifiers, including ensemble models like 

stacking classifiers, offers promising improvements in 

detection performance.These ensemble approaches 

utilize diverse classifiers—such as Random Forest, 

LightGBM, and MLP—and leverage them for enhancing 

generalization and reducing error rates [19], [20]. 

In this context, our study proposes a novel AI-driven 

framework designed to identify malicious software 

within the Android platform, leveraging the co- 

occurrence of static features.By integrating optimized 

feature selection and ensemble learning, the system 

enhances accuracy and robustness across multiple 

benchmark datasets including DREBIN, CIC- 

MALDROID2020, and Malgenome. The ultimate goal is 

to build a lightweight, accurate, and practical solution 

that addresses current gaps in Android malware 

detection systems. 
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2. METHODOLOGY 

A. Proposed Work: 

The model proposed in this research introduces a 

specialized computational framework for detecting 

malicious Android applications that emphasizes the 

importance of co-occurring permissions and APIs in 

accurately discriminating between trustworthy and 

malicious software. This model demonstrates superior 

accuracy compared to existing approaches when 

evaluated on well-known datasets such as Drebin, 

CIC_MALDROID2020, and Malgenome [9], [13], [21], 

with the core objective of enhancing Android security 

and safeguarding user privacy. To achieve this, a 

Stacking Classifier has been implemented, combining 

the predictive performance of Multi-Layer Perceptron 

(MLP),Random Forest and LightGBM classifiers, which 

collectively enhance feature extraction and improve 

overall prediction accuracy. Furthermore, a user-friendly 

system was developed utilizing the Flask framework in 

combination with SQLite, supporting secure user 

authentication through sign-up and sign-in 

functionalities while enabling users to submit 

applications for analysis and receive malware detection 

results efficiently. This comprehensive design makes the 

system practical, reliable, and well- suited for real-world 

Android security applications. 

 

B. System Architecture: 

The architecture of the proposed system begins with a 

dataset consisting of Android applications, where the 

attributes are derived based on various co-occurrence 

combinations of permissions and APIs [4], [5], [7].The 

dataset is systematically partitioned into two seperate 

divisions,,namely a training dataset and a testing 

dataset. The training dataset acts as the foundation for 

constructing a predictive modeling framework (KNN, 

SVM, RF, DT, LR and extension- stacking classifier). 

These models are specifically designed to accurately 

distinguish safe applications from malicious ones. Once 

the models are trained,the performance and 

effectiveness is assessed using the testing set, ensuring 

the models are capable of accurately classifying 

previously unseen applications based on the learned 

patterns of feature co-occurrence. 

 
Fig 1 Proposed architecture 

 

C. Dataset collection: 

(i)DREBIN 

The Drebin dataset is among the most well-known and 

extensively utilized datasets for Android malware 

detection and research, offering a substantial collection 

of both benign and malicious Android applications. Its 

broad size and diversity make it a popular standard for 

evaluating malware detection models, as it supports the 

development of more robust and generalizable machine 

learning solutions [9], [13], [25]. In this work, the Drebin 

dataset has been utilized along with various feature 

combinations to strengthen the malware detection 

process. To provide an initial understanding of the 

dataset, the top five records corresponding to each 

feature combination are displayed, clearly showing the 

structure and the number of columns involved in the 

analysis. 

 

Table 1: Drebin datasets 
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(ii)MALGENOME 

The Malgenome dataset is especially chosen to contain 

a broad spectrum of malicious software specimens, 

thereby serving as a significant resource for focused 

malware analysis and research. Unlike broader datasets, 

Malgenome offers specialized samples that complement 

datasets like Drebin by providing targeted examples for 

the development and assessment of malware 

identification models.Within this research, the 

Malgenome dataset has been utilized with various 

feature combinations to enhance the accuracy of 

malware detection [9], [17]. To illustrate the structure of 

the dataset, the top five rows for each feature 

combination are presented, allowing a clear view of the 

dataset’s attributes and the number of columns involved 

in the analysis. 

 

Table 2: Malgenome datasets 

 
 

 

 
 

(iii)CIC_MALDROID2020 

CIC_MALDROID2020 is provided by the Canadian 

Institute for Cybersecurity (CIC) and is known for its 

size, recency, diversity, and comprehensiveness. 

Similarly, we have used CIC_MALDROID2020 dataset 

with these feature combinations. We are displaying top 5 

rows of the data with each feature combination here. and 

we can see the no. columns present. 

 

Table 3: CIC_MALDROID2020 datasets 

 
 

 
 

 
 

 

 



  

 

 
24     International Journal for Modern Trends in Science and Technology 

 

 

D. Data Processing: 

Data processing includes converting unprocessed data 

into valuable information for businesses. Generally,data 

scientists often handle data by gathering, systematizing, 

processing, confirming, scrutinizing and transforming it 

into easily understandable presentations like texts or 

graphs.Data processing can be accomplished through 

three primary approaches: manual, mechanical, and 

electronic. The objective of this process is to enhance the 

usefulness of information and support more effective 

strategic choices.This allows organizations to refine their 

operations and take prompt, evidence- based actions that 

shape their long-term direction. Computerized 

information handling systems, supported by digital 

applications, are instrumental in enhancing 

efficiency.This capability enables the transformation of 

extensive datasets, including big data, into actionable 

insights that support decision- making and process 

quality control. 

 

E. Feature selection: 

It refers to the technique for recognizing and retaining 

the key attributes within a dataset with the aim of 

boosting the effectiveness of machine learning 

algorithms.As datasets steadily increase in volume and 

structural complexity, systematically minimizing the 

number of features they contain becomes crucial.The 

main of feature selection is to strengthen the predictive 

capability of machine learning models while also 

minimizing the computing resources required for 

training and evaluation. 

Feature selection is an essential stage in the wider field 

of feature engineering. It focuses on eliminating 

irrelevant or redundant features, narrowing down the 

dataset to include only those variables that contribute 

meaningfully to the model’s predictive capability.By 

performing attribute selection before training, we can 

ensure that the machine learning model works more 

efficiently and effectively, rather than depending on the 

model itself to identify which features matter most. 

 

F. Algorithms: 

Logistic Regression is a commonly used classification 

approach designed to forecast the probability of a given 

input being part of a specific category.This algorithm 

utilizes a sigmoid (logistic) mapping to transform input 

features to a likelihood value bounded between 0 and 

1.By applying a predefined threshold, the algorithm 

assigns the data point into classes determined by this 

likelihood, selecting one of two or more possible 

outcomes.Throughout the training phase, the learning 

system optimizes its parameters to represent the data 

effectively, enabling accurate and reliable classifications. 

A Support Vector Classifier (SVC) represents 

supervised learning method that determines the optimal 

separating plane to classify data. By using key data 

points known as support vectors, it maximizes the 

distance between classes, allowing it to handle both 

binary and multi-class classification effectively 

K-Nearest Neighbors (KNN) is a fundamental 

supervised  learning  method  employed  in  both 

regression and classification tasks. It forecasts results 

through the identification of K closest instances and 

using majority voting or averaging. While easy to 

implement, its accuracy depends on the choice of K and 

it may face difficulties when handling  high dimensional 

data lacking proper preprocessing [30]. 

Random Forest represents an ensemble-based 

supervised learning approach that builds a collection of 

decision trees to produce outcomes. It operates by 

training every tree with randomly selected subsets of the 

dataset and then combining their outputs through 

averaging or voting. This approach enhances the 

reliability of results, reduces overfitting, and ensures 

reliable results for both classification and regression 

applications. 

A Decision Tree is a machine learning algorithm 

which forecasts results by repeatedly dividing dataset 

into smaller subsets according to the most important 

attributes. It forms a hierarchical structure where nodes 

represent features and branches indicate possible 

decisions.This clear and interpretable structure renders it 

effective across diverse classification and prediction 

tasks. 

A Stacking Classifier represents an ensemble-based 

learning approach which integrates the outputs from 

several base classifiers, such as Multi-Layer Perceptron 

(MLP), Random Forest (RF),and LightGBM, to generate a 

more precise overall outcome.This method takes 

advantage of the distinct capabilities of individual 

models to enhance overall performance.In this approach, 

the base models undergo training on the dataset, after 

which their predicted outputs are provided as inputs to 

the meta- learner, which learns the optimal way to merge 
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these outputs to produce the final result.Stacking is a 

powerful technique used for improving prediction 

reliability and is commonly employed in machine 

learning for various applications. 

 

3. RESULTS ANALYSIS 

A. Accuracy: The accuracy refers to the capability of a test 

to correctly distinguish between diseased and healthy 

cases.To determine the accuracy, it is essential to 

calculate the ratio of accurately identified positive and 

negative cases in comparison with the overall number of 

instances assessed. Mathematically, this can be 

expressed as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+FP+TN+FN
        (1) 

B. Precision: Precision expresses the share of actual 

positive outcomes within the set of samples the model 

designates as positive.Hence, the formula used to 

compute precision is given by: 

𝑃𝑟ecision =
True Positive

True Positive +False Positive
`   (2) 

C. Recall: Recall serves as an evaluation measure in 

machine learning that assesses how effectively a model 

identifies every applicable instance within a specific 

class. It is calculated as the proportion between correctly 

predicted positive cases and the overall number of true 

positives, reflecting how effectively the model identifies 

every relevant instance belonging to that category. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
            (3) 

D. F1-Score: F1 Score is a performance measure in 

machine learning that integrates precision and recall to 

evaluate a model’s effectiveness. It merges precision and 

recall into one unified value, offering a trade-off between 

the two. In contrast, the accuracy metric only considers 

the overall count of correct outcomes generated by a 

model across the entire dataset 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 X 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
∗ 100      (4) 

Table (4 to 6) assess how well each algorithm performs 

based on the metrics of Accuracy, Precision, Recall, and 

F1-Score.Across all evaluation criteria , the 

API+Permission: Stacking Classifier 

(CIC_MALDROID2020) & API: Stacking Classifier 

consistently outperforms all remaining algorithms. The 

tables also provide a comparative evaluation of metrics 

for the other algorithms. 

 

Table.4 Performance Evaluation Table - CIC_MALDROID2020 

ML Model Accuracy Precision F1_score Recall 

API+Permission : LR 0.99 0.98 0.98 0.99 

API+Permission : SVC 0.99 0.98 0.99 1.00 

API+Permission : KNN 0.97 0.94 0.97 0.99 

API+Permission : RF 0.97 0.97 0.97 0.97 

API+Permission : DT 0.95 0.97 0.95 0.94 

API+Permission : Stacking Classifier 1.00 1.00 1.00 1.00 

API : LR 0.95 0.94 0.95 0.97 

API : SVC 0.96 0.94 0.96 0.97 

API : KNN 0.94 0.93 0.94 0.95 

API : RF 0.94 0.94 0.94 0.94 

API : DT 0.95 0.95 0.94 0.94 

API : Stacking Classifier 0.97 0.98 0.97 0.96 

Permission : LR 0.95 0.93 0.95 0.97 

Permission : SVC 0.95 0.92 0.95 0.97 

Permission : KNN 0.94 0.90 0.94 0.99 

Permission : RF 0.95 0.93 0.95 0.97 

Permission : DT 0.95 0.94 0.95 0.95 

Permission : Stacking Classifier 0.99 0.98 0.99 1.00 

 

Table.5 Performance Evaluation Table - Drebin Dataset 

ML Model Accuracy Precision F1_score Recall 

API+Permission : LR 0.93 0.89 0.91 0.92 

API+Permission : SVC 0.94 0.91 0.92 0.93 

API+Permission : KNN 0.94 0.90 0.92 0.93 

API+Permission : RF 0.94 0.91 0.92 0.93 

API+Permission : DT 0.94 0.91 0.92 0.93 
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API+Premision : Stacking Classifier 0.95 0.94 0.93 0.93 

API : LR 0.95 0.94 0.94 0.93 

API : SVC 0.96 0.96 0.95 0.94 

API : KNN 0.96 0.96 0.95 0.95 

API : RF 0.97 0.97 0.95 0.94 

API : DT 0.96 0.95 0.95 0.94 

API : Stacking Classifier 0.98 0.98 0.97 0.96 

Permission : LR 0.91 0.96 0.87 0.79 

Permission : SVC 0.91 0.95 0.87 0.80 

Permission : KNN 0.90 0.92 0.86 0.80 

Permission : RF 0.92 0.96 0.87 0.80 

Permission : DT 0.92 0.96 0.87 0.80 

Permission : Stacking Classifier 0.91 0.97 0.86 0.78 

 

Table.6 Performance Evaluation Table - Malgenome Dataset 

ML Model Accuracy Precision F1_score Recall 

API+Permission : LR 0.98 0.97 0.97 0.96 

API+Permission : SVC 0.98 0.97 0.97 0.97 

API+Permission : KNN 0.97 0.97 0.95 0.94 

API+Permission : RF 0.98 0.96 0.96 0.97 

API+Permission : DT 0.97 0.94 0.95 0.96 

API+Permission : Stacking Classifier 0.99 0.98 0.98 0.99 

API : LR 0.98 0.97 0.98 0.98 

API : SVC 0.99 0.98 0.98 0.98 

API : KNN 0.98 0.97 0.97 0.97 

API : RF 0.98 0.98 0.98 0.97 

API : DT 0.98 0.97 0.97 0.97 

API : Stacking Classifier 0.99 1.00 0.99 0.98 

Permission : LR 0.93 0.91 0.90 0.90 

Permission : SVC 0.94 0.95 0.91 0.88 

Permission : KNN 0.94 0.93 0.91 0.89 

Permission : RF 0.96 0.95 0.94 0.93 

Permission : DT 0.96 0.95 0.94 0.93 

Permission : Stacking Classifier 0.96 0.94 0.95 0.95 

 

 
Fig.2 Graphical Comparison of Various Machine Learning Algorithms on CIC_MALDROID2020 Dataset Using the 

Evaluation Metrics: F1-Score, Recall, Accuracy, and Precision. 
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Fig.3 Comparative Graph of Various Machine Learning Algorithms on Drebin Dataset Using the Performance 

Measures: F1-Score, Recall, Accuracy, and Precision. 

 

 
Fig. 4 Visual representation comparing different machine learning algorithms on the Malgenome dataset based on 

evaluation metrics such as F1-Score, Recall, Accuracy, and Precision 

 

Accuracy is represented by blue, precision by red, recall 

by green, and F1-Score by purple Fig (2to4). In 

comparison to the other models, the API+Permission: 

Stacking Classifier (CIC_MALDROID2020) & API: 

Stacking Classifier shows superior results across all 

evaluation metrics, attaining the highest scores. The 

graphs above provide a clear visual representation of 

these outcomes.  
Fig 5: Home page for Android Malware Detection 

Interfac 

 

 

Fig.2 Graphical Comparison of Various Machine Learning Algorithms on CIC_MALDROID2020 Dataset Using the 

Evaluation Metrics: F1-Score, Recall, Accuracy, and Precision. 
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Fig 6: User Sign-in and Registration page 

 

 
Fig 7: Login page for Android Malware Detection 

System 

 
Fig 8: Application Feature-Based User input page 

 
Fig 9 : Predict result indicating Malware Detection 

 

4. CONCLUSION 

The efficiency of predictive algorithms for detecting 

Android malware is demonstrated in this analysis. 

Android Malware is demonstrated in this analysis. These 

models showed strong capabilities in identifying 

malicious apps, which is crucial for protecting Android 

users. The stacking classifier, proved to be more effective 

than individual algorithms. The approach of combining 

multiple models enhanced the overall detection 

accuracy, showcasing the power of ensemble 

learning.Flask and SQLite are used to build a simple, 

easy-to-use interface, enabling wider reach and usability. 

The design supports user testing, validates inputs, and 

enables smooth model predictions, thereby improving 

practical usability and promoting adoption. The project 

highlighted the significance of combining both API and 

Permission features, whose combination was found to be 

critical for improving malware detection, emphasizing 

the importance of considering multiple static features in 

analysis.The performance of machine learning 

algorithms varied across different datasets, including 

Drebin, Malgenome, and CIC_MALDROID2020 

[36].This underscores the significance of selecting 

datasets carefully and understanding for developing 

accurate detection models.The models maintained an 

equilibrium between achieving accuracy and reducing 

false positives. This is essential as it ensures that while 

detecting malware, legitimate apps are not mistakenly 

flagged as threats, reducing inconvenience for users. The 

outcomes of this project have broad implications. 

Security professionals can use these improved detection 

techniques to enhance cybersecurity. App developers 

can better safeguard their apps against potential threats, 

and end users benefit from increased protection against 

Android malware, ultimately leading to a safer mobile 

experience. 
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5. FUTURE SCOPE 

Further research could focus on improving the 

instantaneous detection capabilities of the developed 

framework system by continuously monitoring and 

analyzing dynamic features. This would enable the 

system to respond more effectively to evolving Android 

malicious software attacks. Exploring techniques to 

identify the key dynamic attributes for malware 

detection can lead toward creating faster and more 

precise models.Approaches to attribute selection, such as 

mutual information or recursive feature elimination, 

could be investigated. Extending the system to detect 

behavioral anomalies in Android applications can 

provide an additional layer of security. This involves 

identifying deviations from expected behavior, which 

could be indicative of malware. [7] As new types of 

Android malicious software emerge, the framework 

could be developed to adapt and update its models and 

detection strategies. Regularly incorporating new threat 

intelligence and updating the system is essential for 

long-term effectiveness. Expanding the capabilities of 

the system to encompass cross-platform malware 

detection, including iOS and other mobile operating 

systems, can provide a more holistic solution for mobile 

security. 
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