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KEYWORDS ABSTRACT

Liver Cancer Diagnosis; Deep Liver cancer is a highly fatal disease due to its rapid progression and the difficulty of early
Learning; Tumor Segmentation; detection in medical imaging modalities such as CT, MRI, and ultrasound. Subtle tumor
Medical Image Analysis;  characteristics and reliance on manual interpretation often lead to delayed or missed
Explainable Al; Radiomics diagnoses. This study presents an Al-powered diagnostic framework for automated liver
tumor detection, classification, segmentation, and clinical interpretation. The system
employs Convolutional Neural Networks for benign—-malignant classification and an
Attention U-Net for precise tumor segmentation, supported by advanced preprocessing
techniques including noise reduction, CLAHE, and normalization. Radiomic feature
extraction and explainable Al methods (Grad-CAM, SHAP, and LIME) are integrated to
enhance interpretability and clinical trust. Implemented using Python with a lightweight
Streamlit interface, the system is suitable for real-time clinical deployment. Experimental
results on LiTS, TCGA-LIHC, and IRCAD datasets achieve up to 95.2% classification
accuracy and an 87.6% Dice coefficient, demonstrating the framework’s effectiveness in

supporting radiologists and improving early liver cancer diagnosis.

INTRODUCTION modalities such as computed tomography (CT),
Liver cancer is one of the leading causes of magnetic resonance imaging (MRI), and ultrasound are

cancer-related mortality worldwide, largely due to its widely used for diagnosis, yet early-stage liver lesions

aggressive nature and poor prognosis when detected at  often exhibit subtle visual differences that are difficult to

advanced stages. Early diagnosis significantly improves  distinguish from normal tissue.

survival rates; however, detecting liver tumors at an Traditional diagnosis relies heavily on manual

early stage remains a major clinical challenge. Imaging interpretation by radiologists, which is time-consuming
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and prone to inter-observer variability. Moreover,
increasing patient volume, fatigue, and variations in
imaging protocols further complicate accurate diagnosis.
(AD),

particularly deep learning, have demonstrated strong

Recent advances in artificial intelligence
potential in automating medical image analysis and
improving diagnostic accuracy.

This research proposes an Al-powered diagnostic
ecosystem for liver cancer detection that integrates
tumor detection, classification, segmentation, radiomic
feature extraction, and explainable Al (XAI) modules

into a unified framework.
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Figure 1. illustrates the overall workflow of the proposed

Al-assisted liver cancer diagnostic system.

2. LITERATURE REVIEW

Recent studies have explored deep learning
techniques for liver tumor analysis. Convolutional
Neural Networks (CNNs) have been widely used for
liver tumor classification due to their ability to
automatically learn discriminative features from medical
images. Studies using ResNet, VGG, and DenseNet
architectures have reported promising results in
distinguishing benign and malignant tumors.

For tumor segmentation, U-Net and its variants have
become the dominant architectures. Attention U-Net, in
particular, improves segmentation accuracy by focusing
on relevant tumor regions while suppressing irrelevant
background features. Several works using the LiTS and
IRCAD datasets have achieved Dice coefficients above
80%.

Radiomics-based approaches extract handcrafted
texture, shape, and intensity features; however, they
lack

generalization. More recent studies have combined deep

often require careful feature selection and

features with radiomics to enhance performance.

Additionally, the lack of interpretability in deep learning

models has led to the integration of XAI methods such as
Grad-CAM and SHAP to improve clinical trust.

Despite these advances, most existing works focus on
isolated tasks such as classification or segmentation,
rather than a

complete end-to-end diagnostic

framework.

3. EXISTING METHODS

The diagnosis of liver cancer has traditionally relied
on radiological assessment of medical images obtained
from Computed Tomography (CT), Magnetic Resonance
Imaging (MRI), and Ultrasound (US). Although imaging
technologies have advanced significantly, existing
diagnostic methods still face several technical and
clinical limitations. These methods can broadly be
categorized into manual diagnosis, traditional
(CAD),
learning-based approaches, and deep learning-based

methods.

computer-aided diagnosis machine

3.1 Manual Radiological Diagnosis

In conventional clinical practice, radiologists manually
analyze liver scans by visually inspecting multiple slices
to identify abnormal regions. A single CT or MRI scan
may consist of several hundred slices, requiring careful
examination to locate tumors, evaluate size, shape, and
contrast, and determine malignancy.

While experienced radiologists can achieve high
diagnostic accuracy, manual interpretation is inherently
subjective and dependent on expertise. Factors such as
and inter-observer

fatigue, workload pressure,

variability often lead to inconsistent diagnoses.
Early-stage liver tumors, which are small and exhibit
low contrast, are particularly difficult to detect, resulting
in delayed diagnosis and poor prognosis.

3.2 Traditional Computer-Aided Diagnosis (CAD) Systems

Early CAD systems were developed to assist
radiologists by providing automated suggestions based
on predefined image features. These systems typically
rely on handcrafted features such as edge detection,
histogram analysis, and texture descriptors (e.g., GLCM,
LBP).

Although CAD systems reduce manual effort to some
extent, their performance is limited by their dependence
on handcrafted features, which fail to capture the
complex and heterogeneous nature of liver tumors.
Moreover, these systems require extensive parameter

tuning and struggle to generalize across different
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scanners, imaging protocols, and patient populations.
Most traditional CAD tools also lack interpretability and
integration with clinical workflows.
3.3 Machine Learning-Based Methods

With  the
techniques, machine learning (ML) algorithms such as
Support Vector Machines (SVM), Random Forest (RF),
k-Nearest Neighbors (k-NN), and Artificial Neural
Networks (ANN) have been employed for liver tumor
These typically

manual region-of-interest (ROI) selection followed by

advancement of pattern recognition

classification. approaches involve
feature extraction and classification.

Radiomics-based ML methods extract quantitative
features related to tumor texture, shape, and intensity.
While these features provide additional diagnostic
insights, ML-based systems heavily depend on feature
engineering and feature selection strategies. Their
performance degrades significantly when applied to
diverse datasets with variations in image quality and
tumor morphology. Furthermore, manual ROI selection
introduces human bias and limits scalability.

3.4 Deep Learning-Based Methods

Recent studies have demonstrated the superiority of
deep learning, particularly Convolutional Neural
(CNNs),

CNN-based models automatically learn hierarchical

Networks in medical image analysis.
features from raw images, eliminating the need for
handcrafted feature extraction. Architectures such as
VGG, ResNet, DenseNet, and EfficientNet have been
successfully applied for liver tumor classification.

For tumor segmentation, U-Net and its variants,
including Attention U-Net and UNet++, have become
standard due to their ability to produce pixel-level
predictions. These models achieve high Dice coefficients
and accurately delineate tumor boundaries.

However, despite their high accuracy, most deep
learning-based systems operate as black boxes, offering
limited interpretability. Many studies focus on either
classification or segmentation alone, without integrating
both tasks into a unified framework. Additionally, most
existing deep learning systems are developed as research
prototypes and lack user-friendly interfaces, clinical
reporting mechanisms, and real-time adaptability.

3.5 Key Limitations of Existing Methods

Despite significant progress, existing methods suffer

from several critical limitations:

e Lack of integrated end-to-end diagnostic pipelines

Absence of explainable Al mechanisms to support
clinical trust

e Limited adaptability to new real-world data

e High dependence on manual intervention in

preprocessing and ROI selection

e DPoor deployment readiness for  hospital
environments
These shortcomings highlight the need for a

comprehensive, interpretable, and clinically deployable
Al-based diagnostic system, which motivates the

proposed methodology.

4. PROPOSED METHODOLOGY

This study proposes a comprehensive Al-powered
diagnostic framework designed to support early
detection and accurate analysis of liver cancer from
medical imaging modalities such as CT, MRI, and
ultrasound. The proposed methodology follows an
that

preprocessing, deep learning-based classification and

end-to-end  workflow integrates  image
segmentation, radiomic feature extraction, explainable
artificial intelligence, and real-time clinical deployment.
The framework is developed with the objective of
achieving high diagnostic accuracy while maintaining
transparency, scalability, and clinical usability.

The diagnostic process begins with medical image
acquisition, where liver images are provided in standard
formats such as PNG and JPG, as well as clinical formats
including DICOM and NIfTI. Relevant metadata, such as
slice thickness and imaging orientation, are extracted to
preserve spatial consistency. To ensure patient privacy
and compliance with clinical data standards, all
identifiable information is anonymized before further
processing. This flexible input handling enables the
system to operate across diverse clinical environments
and imaging protocols.

Preprocessing plays a critical role in enhancing image
quality and reducing variability across datasets. The
proposed system applies noise reduction techniques
using Gaussian, median, and bilateral filters to suppress
scanner-induced artifacts. Contrast-Limited Adaptive
Histogram Equalization (CLAHE) is employed to
improve lesion visibility, particularly for low-contrast
tumors. Intensity normalization and resizing are
performed to standardize the input dimensions, while
data augmentation techniques are used during training

to improve model generalization and robustness.
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For tumor classification, deep Convolutional Neural
Networks (CNNs) with transfer learning are employed
to automatically learn discriminative features from liver
Pre-trained architectures such as ResNet,

and DenseNet

images.
EfficientNet,

domain-specific medical datasets to classify liver images

are fine-tuned on
into normal, benign, and malignant categories. The use
of transfer learning enables effective training even with
limited annotated data and significantly enhances
classification performance. The output includes class
predictions along with confidence scores, enabling
probabilistic clinical interpretation.

Accurate localization of tumor regions is achieved
through an Attention U-Net-based segmentation model.
This U-Net by

incorporating attention mechanisms that allow the

architecture enhances traditional
network to focus on clinically relevant tumor regions
while suppressing irrelevant background information.
The segmentation module generates pixel-level tumor
masks and overlay visualizations that assist clinicians in
evaluating tumor size, shape, and spatial extent. This
precise delineation is essential for treatment planning
and disease monitoring.

To further

enhance diagnostic depth, radiomic

features are extracted from the segmented tumor regions.

These features capture quantitative characteristics
related to texture, shape, and intensity distribution,
providing complementary information beyond deep
The

features are optionally integrated with classical machine

learning representations. extracted = radiomic
learning classifiers to form a hybrid decision-support
system, improving robustness and interpretability.

A key component of the proposed methodology is the
integration of explainable artificial intelligence
techniques to address the black-box nature of deep
learning models. Grad-CAM is utilized to generate
heatmaps that highlight image regions contributing to
classification decisions, while SHAP and LIME provide
both global and local explanations of model behavior.
These explainability mechanisms enable clinicians to
visually validate predictions, thereby improving trust
and facilitating clinical adoption.

The entire framework is deployed through a
lightweight Streamlit-based user interface that enables
real-time interaction, visualization, and automated
clinical reporting. Clinicians can upload images, view
and results, examine

classification segmentation

explainability heatmaps, and generate downloadable
diagnostic reports without requiring technical expertise.
Additionally, the system incorporates an incremental
learning mechanism that allows models to be updated
continuously as new validated data become available,
ensuring adaptability to evolving clinical scenarios.
Overall, the proposed methodology delivers a unified,
interpretable, and clinically deployable Al-assisted
diagnostic solution for liver cancer. By combining deep
learning, radiomics, explainable AI, and real-time
deployment into a single framework, the system
addresses critical limitations of existing approaches and
provides meaningful support for radiologists in early

liver cancer detection and decision-making.

5. RESULTS
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6. CONCLUSIONS

This study successfully demonstrates the effectiveness
of an Al-powered diagnostic framework for early liver
cancer detection using deep learning, medical image
processing, radiomics, and explainable artificial
intelligence. By integrating CNN-based classification,
U-Net-based tumor segmentation, radiomic feature
extraction, and explainability modules into a unified
pipeline, the proposed system delivers an end-to-end
that

conventional liver cancer diagnosis. The experimental

solution addresses  critical = challenges in
results confirm that the classification model accurately
distinguishes normal, benign, and malignant liver
conditions, even when trained on limited medical
datasets, highlighting the effectiveness of transfer
learning in improving diagnostic reliability.

The segmentation component of the system provides
precise pixel-level tumor delineation, enabling clear
visualization of tumor boundaries, size, and spatial
extent. This capability is essential for clinical assessment,
treatment  planning, and disease
Furthermore, the incorporation of explainable Al
techniques, such as Grad-CAM and SHAP, enhances the

transparency  of

monitoring.

model predictions by visually
highlighting regions that influence diagnostic decisions.
This interpretability plays a crucial role in bridging the
trust gap between Al systems and clinical practitioners.
In addition, the integration of radiomics enriches the
diagnostic process by extracting quantitative imaging
biomarkers that complement deep learning predictions
hybrid The

deployment of the system through a lightweight

and support analytical approaches.
Streamlit-based clinical interface ensures ease of use,
real-time interaction, and automated report generation

without requiring technical expertise. The modular and

scalable architecture, combined with incremental

learning capabilities, makes the system adaptable to
evolving clinical data and suitable for hospital-level
deployment.

Overall, the proposed Al-assisted diagnostic system
significantly reduces diagnostic time, minimizes human
error, and supports radiologists in early liver cancer
detection. While not intended to replace medical
professionals, it serves as an effective decision-support
tool that enhances diagnostic accuracy, efficiency, and

clinical confidence.
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