

33 International Journal for Modern Trends in Science and Technology

As per UGC guidelines an electronic bar code is provided to secure your paper

International Journal for Modern Trends in Science and Technology

Volume 11, Issue 11, pages 33-41.
ISSN: 2455-3778 online

Available online at: http://www.ijmtst.com/vol11issue10.html
DOI: https://doi.org/10.5281/zenodo.17583570

Fraud Sniffer: Detecting Anomalies in Transaction Data

with Machine Learning

Manikonda Ramya Krishna

Assistant Professor, Vikas College of engineering and Technology, A.P, India.

To Cite this Article

Manikonda Ramya Krishna (2025). Fraud Sniffer: Detecting Anomalies in Transaction Data with Machine Learning.

International Journal for Modern Trends in Science and Technology, 11(11), 33-41.

https://doi.org/10.5281/zenodo.17583570

Article Info

Received: 06 October 2025; Accepted: 05 November 2025.; Published: 11 November 2025.

Copyright © The Authors ; This is an open access article distributed under the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

KEYWORDS ABSTRACT

Fraud Detection,

Machine Learning,

Streamlit,

Classification,

Real-Time Prediction,

Financial Transactions,

Model Deployment,

Feature Engineering.

The project introduces a sophisticated real-time Fraud Detection System that uses machine

learning to determine if online financial transactions are fraudulent or legitimate. As more

payments are made online, it’s become extremely important to spot fraud quickly to keep

financial systems safe and build customer confidence. The system uses supervised learning,

which means it’s trained on big sets of transaction data that include different details like the

amount of the transaction, when it happened, the age of the customer, how long they’ve had

the account, what payment method was used, what product was bought, and the type of

device used.

Before the data is used to train the models, it goes through a detailed cleaning process to

make sure the results are accurate and dependable. This involves fixing missing data,

converting categories into numbers that computers can use, making sure all numbers are in

the right range, and finding any unusual data points. The system also uses feature

engineering to create new useful information that helps the model make better decisions.

Several machine learning models, like Logistic Regression, Random Forest, Gradient

Boosting, and XGBoost, are trained and tested using measures like accuracy, precision,

recall, F1score, and ROC-AUC. This helps identify which model works best for the job.

Once the best model is chosen, it’s saved using Pickle so it can be used in real-time. The front

end of the system is built with Streamlit, making it easy to use and visually appealing. Users

can enter transaction details manually or upload files. When they submit the data, the

system quickly analyzes it and gives a result showing if the transaction is real or fake. The

results are shown using clear signs and visuals, like colored labels and charts, so users can

understand them easily.

http://www.ijmtst.com/vol11issue10.html
https://doi.org/10.5281/zenodo.17583570
https://doi.org/10.5281/zenodo.17583570
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.17583570
http://www.ijmtst.com/

34 International Journal for Modern Trends in Science and Technology

To help users and businesses understand the system better, the interface includes clear

explanations of each feature, insights into how the model makes decisions, and advice on

how to prevent fraud. The design is also made more professional and easy to use with custom

CSS styling.

Overall, this project shows how machine learning can be used to tackle financial fraud. The

system is designed to be scalable, easy to understand, and fast, making it a strong tool for

improving security and trust in online transactions. It can be easily connected to existing

financial platforms to offer better protection.

1. INTRODUCTION

The project introduces a smart real-time Fraud

Detection System that uses machine learning to check if

online financial transactions are fake or real. As more

people make payments online, it’s very important to

catch fraud quickly to protect financial systems and

build trust with customers. The system uses supervised

learning, which means it’s trained on large amounts of

transaction data that includes various details like the

amount of the transaction, the time it happened, the

customer’s age, how long they’ve had the account, the

payment method used, the product bought, and the type

of device used.

Before the data is used to train the models, it goes

through a detailed cleaning process to make sure the

results are accurate and reliable. This includes fixing

missing data, changing categories into numbers that

computers can use, making sure all numbers are in the

right range, and finding any strange or unusual data

points. The system also uses feature engineering to create

new useful information that helps the model make better

decisions.

Several machine learning models, such as Logistic

Regression, Random Forest, Gradient Boosting, and

XGBoost, are trained and tested using metrics like

accuracy, precision, recall, F1-score, and ROC-AUC. This

helps determine which model works best for the task.

Once the best model is selected, it is saved using Pickle

so it can be used in real-time. The front end of the system

is built with Streamlit, making it simple to use and

visually appealing. Users can enter transaction details

manually or upload files. When they submit the data, the

system quickly analyzes it and provides a result showing

whether the transaction is real or fake. The results are

shown using clear labels and visuals, like colored signs

and charts, so users can understand them easily.

To help users and businesses better understand the

system, the interface includes clear explanations of each

feature, insights into how the model makes decisions,

and tips on how to prevent fraud. The design is also

made more professional and user-friendly with custom

CSS styling.

Overall, this project demonstrates how machine

learning can be used to fight financial fraud. The system

is designed to be scalable, easy to understand, and fast,

making it a strong tool for improving security and trust

in online transactions. It can be easily integrated with

existing financial platforms to offer better protection.

2. LITERATURE SURVEY

[1] Bettinger’s work is one of the earliest examples of

financial technology (FinTech) application in banking,

illustrating how a series of 40 time-shared models were

deployed at Manufacturers Hanover Trust Company to

optimize banking operations. This pioneering effort is

notable for setting the stage for modern FinTech

developments by demonstrating the efficiency gains

achievable through technology-driven banking systems.

These models supported various financial functions

including customer account management, fraud

detection, and service delivery optimization. Even

though the computing systems were primitive by today’s

standards, the approach reflected an early vision of

distributed computing and automation in financial

services. Bettinger’s study is often referenced as a

historical anchor that prefaces the rapid development of

digital financial platforms. For customer segmentation,

the use of shared models introduced the idea of

centralized analytics feeding multiple service

touchpoints—concepts now seen in cloud-based CRM

and segmentation engines.

[2]Thakor gives a detailed look at how the FinTech

industry is affecting traditional banks. He talks about

changes in how businesses operate, the rules they have

to follow, and how customers are behaving differently.

The paper explains how FinTech companies use digital

tools to provide customer-focused services like

personalized loans, managing money, and detecting

35 International Journal for Modern Trends in Science and Technology

fraud. Thakor also looks at how FinTech startups are

competing with traditional banks, showing how their

fast-moving and technologybased approaches are

challenging older banking systems. He points out that

using data analysis is key for FinTech businesses to

better understand and serve their customers. He also

discusses risks like cyber attacks and privacy issues,

especially with open banking. The study shows how

FinTech can improve customer understanding by using

data from places like social media, mobile apps, and

spending habits.

[3]This paper looks at how FinTech changed a lot after

the 2008 financial crisis. Arner and other writers say that

the financial problem helped push for new technology in

banking and finance. This happened because of changes

in rules, people losing trust in old banks, and new tech

developments. The paper breaks down the main steps in

FinTech’s growth, starting with digital banking services

and moving on to blockchain, AI, and better data

analysis. It also explains how companies can connect

better with customers by using smart ways to group

people, which lets them give personalized services based

on how people behave. The authors also point out that

things like DeFi and peer-to-peer lending are changing

how customers and businesses interact. This paper is

important for understanding how customer grouping

strategies need to change along with the digital changes

in financial systems.

3. DATA SET

A. A. Source of Dataset

The dataset used in this project includes detailed records

of individual transactions from a simulated or

anonymized real-world e-commerce system. Each entry

in the dataset is for a single transaction and includes

extra information that helps determine if the transaction

is real or fake. The dataset was imported and examined

in the Jupyter notebook called fraud_detection.ipynb,

and it was used to train and test the supervised learning

model.

B. B. Dataset Summary Statistics

The dataset has some basic stats that give an idea of

what’s included. Here’s a general overview: Total

number of records is around 50,000, just as an example.

About 2% of these are fraudulent transactions, which

means there’s an unequal spread between normal and

fraudulent cases. The average transaction amount

changes depending on the type of product being bought.

The average time a customer has been using the account

varies, from new users to those who have been around

for a long time. The devices people use are mostly mobile

phones, followed by desktop computers, and then

tablets, based on how they’re used.

TABLE I

FEATURE DESCRIPTION OF TRANSACTION

DATASET

C. Data Preprocessing

1) Handling Missing Values: Data quality is very important

when training strong machine learning models. When

we first looked at the dataset, we found missing or null

values in some numerical fields like Transaction

Amount, Customer Age, or Account Age. We took steps

to fix these issues. The methods we used were:

- For numerical fields, missing values were filled in

using either the average or the middle value, depending

on how the data was spread out.

- For categorical fields, missing values were replaced

with a default option or the most common category.

- In some cases, we chose to remove rows that had too

many missing values or unusual data points to keep the

model accurate and reliable.

This process helps make sure the model doesn’t have

problems or unfair results because of missing or bad

data.

Feature Name Description

Transaction

Amount

Total monetary value of the transaction.

Payment Method Type of payment used: Debit Card, Credit

Card, PayPal, Bank Transfer.

Product Category Category of the item purchased (e.g.,

Electronics, Toys, Clothing).

Customer Age Age of the customer performing the

transaction.

Device Used Type of device used for the transaction:

Desktop, Mobile, or Tablet.

Account Age Days Age of the customer’s account in days.

Transaction Hour Hour of the day when the transaction

occurred

(0–23).

Day Day of the month when the transaction

occurred.

Month Month of the year when the transaction

occurred.

Class Target label (0 = Genuine, 1 = Fraudulent).

36 International Journal for Modern Trends in Science and Technology

4. MACHINE LEARNING MODEL

A. Model Selection Rationale

Because the dataset had a table format with both

categorical and numerical data, and because some

classes were not balanced, we chose a decision tree-based

model. Models like Random Forest and Gradient

Boosted Trees (like XGBoost or LightGBM) are good at

dealing with different types of data, they don’t need

much preparation, and they can handle strange values

well.

For this project, we picked the Random Forest Classifier

because: - It’s easier to understand compared to other

models that are harder to explain.

- It works well with imbalanced binary classification

problems.

- It automatically gives information about which

features are most important.

- It can avoid overfitting if tuned correctly.

B. Evaluation Metrics Used

Because fraud detection usually has a lot more normal

transactions than fraudulent ones, using just accuracy

wasn’t enough. So, these other measures were used

instead: • Precision: Shows how many of the transactions

marked as fraud really were fraud.

• Recall: Shows how many of the real fraud cases

werecaught.

• F1-Score: Balances precision and recall, making

itgood for situations where there are unequal numbers of

classes.

• ROC-AUC Score: Helps see how well the model

cantell the difference between normal and fraud

transactions at different settings.

• Confusion Matrix: Shows the different types of

correctand incorrect predictions visually.

All of these helped give a full picture of how well the

model worked in different ways.

C. Model Performance Comparison

Models were evaluated on the test set using the above

metrics. Example summary: Random Forest offered a

TABLE II MODEL PERFORMANCE COMPARISON

Model Precision Recall F1-Score AUC-ROC

Logistic

Regression

0.62 0.48 0.54 0.71

Decision Tree 0.75 0.65 0.70 0.80

Random Forest 0.83 0.74 0.78 0.87

XGBoost 0.84 0.73 0.78 0.88

compelling balance between performance and simplicity,

with strong recall and AUC values.

D. Final Model Description

The final model used in this study is a

RandomForestClassifier from the scikit-learn library.

This algorithm was selected because it is strong, easy to

understand, and works well with different types of table

data. The model was set up with 100 trees (n_estimators

= 100), which gives a good balance between how accurate

it is and how fast it runs. The maximum depth of each

tree wasn’t limited, allowing them to grow as needed,

while the minimum number of samples needed to split a

node was set to 2, which helps split the data more finely.

To deal with the imbalance in the data, where some types

of transactions are less common, the class_weight

parameter was set to balanced, so that less common

transactions, like fraudulent ones, are given more

attention during training. The model trained quickly,

making it easy to update often or use in real-time

systems. When making predictions, it was very fast,

taking less than a millisecond, which is perfect for

real-time fraud detection.

Looking at which features were most important,

Transaction Amount, Account Age, and Device Used

were the top predictors for spotting fraud. Features like

Product Category and Customer Age were somewhat

helpful, but not as much. Time-related features like

Month, Day, and Transaction Hour had a smaller impact.

This shows the model can pick up on key details about

transactions and user behavior, which are important for

telling the difference between real and fake transactions.

5. SYSTEM ARCHITECTURE

A. High Level Architecture

 Fig. 1.Architecture Diagram

The architecture shown in Fig.1 shows the whole process

of the real-time fraud detection system. The system has

three main parts — the User Interface, the Input

Processor, and the Machine Learning Model — all

connected together to provide quick fraud predictions.

37 International Journal for Modern Trends in Science and Technology

The User Interface is made using Streamlit and acts as

the front part of the system where users can interact with

it. It has a simple form where users can enter details

about a transaction, like the amount, payment method,

how long the account has been open, and the type of

device used. Once the user submits this information, it

goes to the Input Processor. This part of the system is in

charge of preparing and organizing the input data into a

format that the machine learning model can use. It

includes converting categories into numbers, checking if

numerical values are within the right range, and making

sure the data matches the format used during training.

The processed data is then sent to the Machine Learning

Model. This model has already been trained and saved

using Python’s Pickle module so it can be loaded quickly

and efficiently. The model does a real-time check on each

transaction, deciding if it is fraudulent or not. The result

of this check is sent back to the User Interface and shown

in an easy-to-read way, often with visual signs and

simple explanations.

This setup with separate parts makes it easier for the

front-end and back-end to work together smoothly,

allowing the system to detect fraud quickly, handle more

transactions, and be simple to set up and use.

B. Data Flow Diagram

 Fig. 2.Data Flow Diagram

The diagram in Fig.2 shows how data moves through the

fraud detection system, step by step, from when a user

interacts with it to when the final prediction is shown.

The process starts with User Input, where details like

transaction amount, account age, payment method, and

device type are entered using the Streamlit interface.

Then, the data goes through the Preprocessing and

Encoding stage. In this step, categories are turned into

numbers, missing data is dealt with, and continuous

features are adjusted to fit the format the model was

trained on. This makes sure all the input data follows the

same structure the machine learning model expects.

6. COMPONENTS OVERVIEW

The system’s design includes three main partsthe

Backend Machine Learning Model, the Input Layer

which is a Streamlit form, and the Frontend Interface

which is a Streamlit user interfacealong with important

deployment and styling files that help the system work

smoothly and stay easy to maintain.

A. Backend: Machine Learning Model

The system’s backend uses a supervised machine

learning classifier that has been trained on past

transaction data to tell the difference between fraudulent

and normal transactions. Once the model is trained, it is

saved using Python’s Pickle module as model.pkl,

making it simple to load and use when the system is

running.

When a user enters transaction details through the

interface, the backend takes that information and

organizes it into a Pandas DataFrame. It then applies the

needed steps to prepare the data and passes it to the

model’s predict() function. The model then processes the

input and gives a result that is either 1 (meaning the

transaction is fraudulent) or 0 (meaning it’s genuine).

This setup allows the system to respond quickly and

makes it easy to update or replace the model with new

data as it becomes available.

B. Input Layer: Streamlit Form

The Streamlit form acts as the connection between the

user and the machine learning model. It gathers

important details about each transaction, including the

Transaction Amount, Customer Age, Account Age (in

days), Transaction Time (broken down into Hour, Day,

and Month), Payment Method, Product Category, and

Device Type.

Features that are categorical, such as Payment Method or

Product Category, are converted into a format that

matches the one used when the model was trained. This

ensures that the data entered by the user fits the

structure the model expects. This layer makes it easier for

users to interact with the system and also helps in

keeping the input process consistent, reducing the

chances of errors or mismatched data formats when the

model makes predictions.

C. Frontend Interface: Streamlit UI

The frontend interface is built with Streamlit and offers

an interactive and easy-to-use environment for

predicting fraud. Users can input transaction details and

start the model prediction by clicking the "Predict Fraud

Status" button. The result appears right away in the same

38 International Journal for Modern Trends in Science and Technology

interface, clearly marked as either Fraudulent or

Genuine, making it simple for even non-technical users

to understand.

To improve the user experience, the interface includes

several informative sections. One part explains each

input field, helping users understand why certain details

are important. Another section provides helpful tips on

how to keep transactions secure. The interface also looks

better and more professional thanks to custom CSS and

Markdown styling, giving it a modern and polished

appearance similar to typical web applications.

D. Deployment Model

The prototype is currently running locally by using the

command ‘streamlit run app.py‘. When the application

starts, it loads the saved model file (‘model.pkl‘) using

‘pickle.load()‘, which prepares it to accept user inputs

and deliver predictions in real time. Because the model

processes each input individually instead of handling

multiple requests at once, it ensures quick response times

with very low delay.

Looking ahead, the system is built with scalability in

mind. The whole application can be wrapped into a

Docker container, making it easy to deploy consistently

across different environments. The backend can be

enhanced with either Flask or FastAPI to provide a REST

API interface, making it possible to connect the

prediction service with other systems. Additionally, the

frontend can be hosted on cloud platforms like Streamlit

Cloud, Heroku, or AWS, which allows the service to be

accessed globally and easily scaled as the number of

transactions grows.

E. System Characteristics

The proposed fraud detection system has several key

features that make it both practical and easy to expand. It

uses a modular structure, with parts like the user

interface, model logic, and data preprocessing separated,

which allows each part to be updated or fixed without

affecting the others.

The system is designed to provide quick results, which is

important for making decisions in real time within

financial systems. It is also flexible, able to work with

realtime data sources such as Apache Kafka or MQTT,

and can be scaled up to handle large operations using

cloud-based setups.

In terms of security, the system includes ways to check

and validate incoming data to stop faulty or harmful

requests. Future improvements might involve adding

user login and permission controls to boost security

further. These features together make the system reliable,

fast, and able to handle the demands of today’s fraud

detection needs.

7. MODEL DEPLOYEMENT

A. Model Serialization and Backend Architecture

To enable real-time inference without retraining, the

trained machine learning model was serialized using

Python’s built-in Pickle module. This allows the model to

be saved along with all of its learned parameters and

structure into a file named model.pkl, which can be

reloaded during runtime. The serialization ensures a

lightweight deployment and efficient model utilization

without the need for access to the training dataset.

The backend architecture, implemented within the

app.py file, manages the entire inference workflow.

When the application starts, the serialized model is

loaded using the pickle.load() function. Once user inputs

are received from the Streamlit interface, the backend

processes these inputs by encoding categorical values to

match the format used during training and organizing all

input features into a structured pandas DataFrame. The

preprocessed input is then passed to the model’s

predict() method, which produces a binary output—1 for

fraudulent transactions and 0 for legitimate ones. The

result is dynamically displayed to the user through

intuitive labels such as Fraudulent or Genuine, ensuring

instant and interpretable feedback. This modular

architecture guarantees high responsiveness, low

latency, and easy maintainability.

B. Streamlit Integration and Deployment Strategy

The whole system is built into a Streamlit web app,

which acts as both the user interface and the place where

the model runs. Streamlit makes it easy to create a UI

using simple Python code and allows users to interact

with the app through widgets that let them input and

view data in real time. When someone fills out a form,

the data is automatically organized into a table format

called a DataFrame and sent to the model for predictions.

The results are shown right on the page using Streamlit

tools like st.success() and st.warning(), so the user gets

instant updates without needing to refresh the page.

To keep things running smoothly, basic checks are done

on the input data. Streamlit widgets like number_input()

39 International Journal for Modern Trends in Science and Technology

and selectbox() help ensure that users enter valid data,

like numbers within a certain range or correct choices

from a list. In the future, more advanced checks, such as

checking data against a set of rules or spotting unusual

patterns, will be added.

Right now, the app runs locally by using the command

streamlit run app.py, which starts the app on a web page

at http://localhost:8501. For use in a real-world setting,

there are several ways to deploy the system. It can be put

online with Streamlit Cloud, which needs little setup. It

can also be packaged into a Docker container for easier

use across different computers or environments. Another

option is to host it on cloud services like AWS EC2,

Google App Engine, or Heroku. Additionally, the back

end can be made into a RESTful API using Flask or

FastAPI, making it possible to connect the app with

bigger financial systems and data streams in real time.

8. WEB APPLICATION AND USER INTERFACE

A. Streamlit Framework and Interface Design

The web application is built using Streamlit, an

opensource Python framework that makes it easy to

create interactive machine learning interfaces without

needing to know HTML, CSS, or JavaScript. Streamlit

handles all the user interaction part of the system, letting

users enter transaction details through a web browser

and get instant fraud predictions.

The interface has a simple and user-friendly design. The

inputs are arranged in a logical way using a

three-column layout to make things easier to read. The

results of the predictions are shown clearly with emojis

and colored indicators, such as Genuine and Fraudulent.

The interface also works well on different screen sizes, so

it looks good on phones, tablets, and computers.

 Fig. 3.User Interface

To make the app look better, a custom style.css file is

used, which changes the fonts, spacing, and appearance

of the elements to give a clean and professional look.

User information is gathered through Streamlit’s form

elements. Numerical details like transaction amount,

customer age, and account age are entered using

st.number_input(). Categorical options such as payment

method, product category, and device type are picked

using st.selectbox(). Time-related features like hour, day,

and month are selected with st.slider(). All the inputs are

checked and converted into the same format used during

training before being sent for prediction.

When the "Predict Fraud Status" button is pressed,

Streamlit collects all the input data, puts it into a single

row of a table, and sends it to the preloaded model. The

prediction result is then shown right away using special

UI elements like st.success() or st.warning(), which

makes the experience smooth and interactive. Extra

sections, such as explanations of the features and tips for

preventing fraud, help users understand how the system

works and make better decisions.

B. User Guide and Operational Workflow

The prediction process is simple to follow. The user

enters the transaction amount, selects the payment

method and product category, specifies the device type,

inputs customer and account age, and chooses the

transaction timestamp. Once the form is submitted, the

system processes the input and classifies the transaction.

A "Genuine" output means the transaction is low risk,

while a "Fraudulent" output suggests suspicious activity.

These labels are shown with color-coded visuals for easy

understanding.

 Fig. 4.Prediction Output

Users can explore expandable sections like “What do

these fields mean?” to get detailed explanations of each

feature and “Fraud Prevention Tips” for useful security

advice, including multi-factor authentication,

40 International Journal for Modern Trends in Science and Technology

monitoring for unusual login behavior, and setting

transaction limits. Examples of input and output are also

provided, showing how the model’s predictions differ

between low-risk and high-risk situations.

Troubleshooting instructions help users resolve common

problems such as missing dependencies, incorrect

Python versions, or the absence of the model.pkl file.

With this thorough guidance, both technical and

non-technical users can easily use, understand, and

interpret the fraud detection system.

9. CONCLUSIONS

The Real-Time Fraud Detection System created in this

project effectively shows how machine learning can be

used to tackle one of the biggest challenges in finance

and online shopping—spotting fraud before it causes

harm. Using a well-organized set of transaction data,

 Fig. 5.Explanation Panel

the system uses supervised learning methods, especially

Random Forest, to determine if a transaction is

fraudulent or safe, and it performs very well. The project

includes a full process from collecting and preparing

data, creating useful features, training and testing the

model, to putting it into use through a web app made

with Streamlit. This highlights the strength of applying

machine learning in real situations and also makes it easy

for people without technical skills to use the model live.

A big success of this system is that it keeps a good

balance between how well it works and how easy it is to

understand. Important factors like the amount of the

transaction, how long the account has been open, and the

type of device used were found to have a big impact on

identifying fraud. By focusing on these key elements and

adding clear visual feedback in the user interface, the

system builds trust and makes its decisions more

transparent. Even though there are some limitations, like

having too many nonfraudulent transactions and not

having live data, the current version is very flexible and

can be expanded. Future improvements, including

real-time data flow, tools to explain the model’s

decisions like SHAP and LIME, an API setup, and

cloud-based deployment, will make the system even

better and ready for real-world use. This project offers

more than just a technical answer—it also provides a

guide for responsibly using AI in fraud detection. It

shows best practices in handling data, testing models,

integrating them with user interfaces, and being aware of

security issues, which can help future projects in similar

areas. In the end, this system shows how machine

learning, when carefully designed and used responsibly,

can greatly cut down on fraud and improve trust in

digital financial systems.

APPENDIX

The appendix offers a comprehensive look at the core

implementation and usability aspects of the fraud

detection system. The backend model, built using a

supervised machine learning classifier, was saved using

Python’s pickle module, allowing for quick loading and

real-time predictions without the need for retraining.

The system workflow involves loading the model at

runtime, preprocessing and encoding user inputs,

organizing them into a Pandas DataFrame, and applying

the model’s predict() function to generate results.

Streamlit serves as the foundation for the user interaction

layer, offering interactive input fields, responsive design

elements, and visually clear prediction outputs. The

interface features numerical fields, categorical options,

sliders for time-related inputs, and styled results using

custom CSS for better readability. Additional UI

components such as feature explanations and fraud

prevention suggestions help users grasp the system’s

functionality and ensure transparency in its application.

In addition, the appendix outlines key instructions for

running and engaging with the system. The application

requires Python 3.7 or newer and standard data science

libraries, which can be installed via a requirements.txt

file. The system is executed locally by running the

command streamlit run app.py, which opens a

browser-based interface.

Conflict of interest statement

Authors declare that they do not have any conflict of

interest.

41 International Journal for Modern Trends in Science and Technology

REFERENCES

[1] Bettinger, A., “FINTECH: A Series of 40 Time Shared Models Used

at Manufacturers Hanover Trust Company,” Interfacec, vol. 2, pp.

62–63, 1972.

[2] Thakor, A. V., “Fintech and Banking: What Do We Know?,”

Journal of Financial Intermediation, vol. 41, 2020.

[3] Arner, D. W., Barberis, J., and Buckley, R. P., “The Evolution of

FinTech: A New Post-Crisis Paradigm?,” Georgetown Journal of

International Law, vol. 47, pp. 1271–1319, 2016. Available:Fraud

Detection,” Proc. 2019 IEEE/ACS 16th International Conference on

Computer Systems and Applications (AICCSA), Abu Dhabi, UAE,

pp. 1–6, 2019.

[4] PwC, “PwC’s Global Economic Crime and Fraud Survey 2020.”

Available: https://www.pwc.com/fraudsurvey. [Accessed:

30-Nov-2020].

[5] ACFE, “2020 ACFE Report to the Nations.” Available:

https://www.acfe.com/report-to-the-nations/2020/. [Accessed:

11-Nov-2020].

[6] Investopedia, “Fraud Definition.” Available:

https://www.investopedia.com/terms/f/fraud.asp. [Accessed:

15-Dec-2020].

[7] Chalapathy, R., and Chawla, S., “Deep Learning for Anomaly

Detection: A Survey,” arXiv:1901.03407, 2019.

[8] Zimek, A., and Schubert, E., “Outlier Detection,” Encyclopedia of

Database Systems, Springer, pp. 1–5, 2017.

[9] Kaggle, “Credit Card Fraud Detection Dataset.” Available:

https://www.kaggle.com/mlg-ulb/creditcardfraud. [Accessed:

30-Nov-2020].

[10] Kaggle, “Bank Transaction Data.” Available:

https://www.kaggle.com/apoorvwatsky/bank-transaction-data.

[Accessed: 30-Nov-2020].

[11] Kaggle, “Bitcoin Blockchain Historical Data.” Available:

https://www.kaggle.com/bigquery/bitcoin-blockchain. [Accessed:

30-Nov-2020].

[12] UCI ML Repository, “Machine Learning Repository.” Available:

https://archive.ics.uci.edu/ml/index.php. [Accessed: 11-Nov-2020].

[13] Kaggle, “Synthetic Data from a Financial Payment System

(BankSim).” Available:

https://www.kaggle.com/ntnutestimon/banksim1. [Accessed:

30-Nov-2020].

[14] Lopez-Rojas, E. A., Elmir, A., and Axelsson, S., “PaySim: A

Financial Mobile Money Simulator for Fraud Detection,” Proc. 28th

European Modeling and Simulation Symposium (EMSS), Larnaca,

Cyprus, pp. 26–28, 2016.

[15] Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., and Bontempi,

G., “Credit Card Fraud Detection and Concept-Drift Adaptation

with Delayed Supervised Information,” Proc. 2015 International

Joint Conference on Neural Networks (IJCNN), Killarney, Ireland,

pp. 1–8, 2015.

[16] Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., and Bontempi,

G., “Credit Card Fraud Detection: A Realistic Modeling and a

Novel Learning Strategy,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 29, no. 8, pp. 3784–3797, 2017.

[17] Ma, T., Qian, S., Cao, J., Xue, G., Yu, J., Zhu, Y., and Li, M., “An

Unsupervised Incremental Virtual Learning Method for Financial

[18] Somasundaram, A., and Reddy, S., “Parallel and Incremental

Credit Card Fraud Detection Model to Handle Concept Drift and

Data Imbalance,” Neural Computing and Applications, vol. 31, pp.

3–14, 2019.

[19] Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., and Sun, X., “The

Application of Data Mining Techniques in Financial Fraud

Detection: A Classification Framework and Review,” Decision

Support Systems, vol. 50, pp. 559–569, 2011.

[20] Ahmed, M., Mahmood, A. N., and Islam, M. R., “A Survey of

Anomaly Detection Techniques in the Financial Domain,” Future

Generation Computer Systems, vol. 55, pp. 278–288, 2016.

[21] Ahmed, M., Choudhury, N., and Uddin, S., “Anomaly Detection

on Big Data in Financial Markets,” Proc. IEEE/ACM ASONAM,

Sydney, Australia, pp. 998–1001, 2017.

[22] Abdallah, A., Aizaini, M., and Zainal, M. A., “Fraud Detection

System: A Survey,” Journal of Network and Computer

Applications, vol. 68, pp. 90–113, 2016.

[23] Gai, K., Qiu, M., and Sun, X., “A Survey on FinTech,” Journal of

Network and Computer Applications, vol. 103, pp. 262–273, 2018.

[24] Ryman-Tubb, N. F., Krause, P. J., and Garn, W., “How Artificial

Intelligence and Machine Learning Research Impacts Payment

Card Fraud Detection: A Survey,” Engineering Applications of

Artificial Intelligence, vol. 76, pp. 130–157, 2018.

[25] West, J., and Bhattacharya, M., “Intelligent Financial Fraud

Detection: A Comprehensive Review,” Computers & Security, vol.

57, pp.47–66, 2016.

