As per UGC guidelines an electronic bar code is provided to secure your paper

b (G
R
Check for i‘u""i

updates ™"

International Journal for Modern Trends in Science and Technology
Volume 11, Issue 11, pages 33-41.

ISSN: 2455-3778 online

Auvailable online at: http://www.ijmtst.com/voll lissuel0.html

DOL: https://doi.org/10.5281/zenodo.17583570

Fraud Sniffer: Detecting Anomalies in Transaction Data
with Machine Learning

Manikonda Ramya Krishna
Assistant Professor, Vikas College of engineering and Technology, A.P, India.

To Cite this Article

Manikonda Ramya Krishna (2025). Fraud Sniffer: Detecting Anomalies in Transaction Data with Machine Learning.
International ~ Journal = for Modern Trends in Science and Technology, 11(11), 33-41.
https://doi.org/10.5281/zenodo.17583570

Article Info
Received: 06 October 2025; Accepted: 05 November 2025.; Published: 11 November 2025.

Copyright © The Authors ; This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

KEYWORDS ABSTRACT

Fraud Detection, The project introduces a sophisticated real-time Fraud Detection System that uses machine
Machine Learning, learning to determine if online financial transactions are fraudulent or legitimate. As more
Streamlit, payments are made online, it’s become extremely important to spot fraud quickly to keep
Classification, financial systems safe and build customer confidence. The system uses supervised learning,
Real-Time Prediction, which means it’s trained on big sets of transaction data that include different details like the
Financial Transactions, amount of the transaction, when it happened, the age of the customer, how long theyve had
Model Deployment, the account, what payment method was used, what product was bought, and the type of
Feature Engineering. device used.

Before the data is used to train the models, it goes through a detailed cleaning process to
make sure the results are accurate and dependable. This involves fixing missing data,
converting categories into numbers that computers can use, making sure all numbers are in
the right range, and finding any unusual data points. The system also uses feature
engineering to create new useful information that helps the model make better decisions.
Several machine learning models, like Logistic Regression, Random Forest, Gradient
Boosting, and XGBoost, are trained and tested using measures like accuracy, precision,
recall, F1score, and ROC-AUC. This helps identify which model works best for the job.
Once the best model is chosen, it’s saved using Pickle so it can be used in real-time. The front
end of the system is built with Streamlit, making it easy to use and visually appealing. Users
can enter transaction details manually or upload files. When they submit the data, the
system quickly analyzes it and gives a result showing if the transaction is real or fake. The
results are shown using clear signs and visuals, like colored labels and charts, so users can
understand them easily.

e
33 International Journal for Modern Trends in Science and Technology

http://www.ijmtst.com/vol11issue10.html
https://doi.org/10.5281/zenodo.17583570
https://doi.org/10.5281/zenodo.17583570
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.17583570
http://www.ijmtst.com/

To help users and businesses understand the system better, the interface includes clear
explanations of each feature, insights into how the model makes decisions, and advice on
how to prevent fraud. The design is also made more professional and easy to use with custom
CSS styling.

Owerall, this project shows how machine learning can be used to tackle financial fraud. The
system is designed to be scalable, easy to understand, and fast, making it a strong tool for

improving security and trust in online transactions. It can be easily connected to existing

financial platforms to offer better protection.

1. INTRODUCTION

The project introduces a smart real-time Fraud
Detection System that uses machine learning to check if
online financial transactions are fake or real. As more
people make payments online, it's very important to
catch fraud quickly to protect financial systems and
build trust with customers. The system uses supervised
learning, which means it’s trained on large amounts of
transaction data that includes various details like the
amount of the transaction, the time it happened, the
customer’s age, how long they’ve had the account, the
payment method used, the product bought, and the type
of device used.

Before the data is used to train the models, it goes
through a detailed cleaning process to make sure the
results are accurate and reliable. This includes fixing
missing data, changing categories into numbers that
computers can use, making sure all numbers are in the
right range, and finding any strange or unusual data
points. The system also uses feature engineering to create
new useful information that helps the model make better
decisions.

Several machine learning models, such as Logistic
Regression, Random Forest, Gradient Boosting, and
XGBoost, are trained and tested using metrics like
accuracy, precision, recall, F1-score, and ROC-AUC. This
helps determine which model works best for the task.
Once the best model is selected, it is saved using Pickle
so it can be used in real-time. The front end of the system
is built with Streamlit, making it simple to use and
visually appealing. Users can enter transaction details
manually or upload files. When they submit the data, the
system quickly analyzes it and provides a result showing
whether the transaction is real or fake. The results are
shown using clear labels and visuals, like colored signs
and charts, so users can understand them easily.

To help users and businesses better understand the
system, the interface includes clear explanations of each

feature, insights into how the model makes decisions,

and tips on how to prevent fraud. The design is also
made more professional and user-friendly with custom
CSS styling.

Overall, this project demonstrates how machine
learning can be used to fight financial fraud. The system
is designed to be scalable, easy to understand, and fast,
making it a strong tool for improving security and trust
in online transactions. It can be easily integrated with

existing financial platforms to offer better protection.

2. LITERATURE SURVEY

[1] Bettinger’s work is one of the earliest examples of
financial technology (FinTech) application in banking,
illustrating how a series of 40 time-shared models were
deployed at Manufacturers Hanover Trust Company to
optimize banking operations. This pioneering effort is
notable for setting the stage for modern FinTech
developments by demonstrating the efficiency gains
achievable through technology-driven banking systems.
These models supported various financial functions
including customer account management, fraud
detection, and service delivery optimization. Even
though the computing systems were primitive by today’s
standards, the approach reflected an early vision of
distributed computing and automation in financial
services. Bettinger's study is often referenced as a
historical anchor that prefaces the rapid development of
digital financial platforms. For customer segmentation,
the use of shared models introduced the idea of
centralized analytics feeding multiple service
touchpoints —concepts now seen in cloud-based CRM
and segmentation engines.

[2]Thakor gives a detailed look at how the FinTech
industry is affecting traditional banks. He talks about
changes in how businesses operate, the rules they have
to follow, and how customers are behaving differently.
The paper explains how FinTech companies use digital
like

personalized loans, managing money, and detecting

tools to provide customer-focused services

34 International Journal for Modern Trends in Science and Technology

fraud. Thakor also looks at how FinTech startups are
competing with traditional banks, showing how their
fast-moving and technologybased approaches are
challenging older banking systems. He points out that
using data analysis is key for FinTech businesses to
better understand and serve their customers. He also
discusses risks like cyber attacks and privacy issues,
especially with open banking. The study shows how
FinTech can improve customer understanding by using
data from places like social media, mobile apps, and
spending habits.

[3]This paper looks at how FinTech changed a lot after
the 2008 financial crisis. Arner and other writers say that
the financial problem helped push for new technology in
banking and finance. This happened because of changes
in rules, people losing trust in old banks, and new tech
developments. The paper breaks down the main steps in
FinTech’s growth, starting with digital banking services
and moving on to blockchain, Al and better data
analysis. It also explains how companies can connect
better with customers by using smart ways to group
people, which lets them give personalized services based
on how people behave. The authors also point out that
things like DeFi and peer-to-peer lending are changing
how customers and businesses interact. This paper is
important for understanding how customer grouping
strategies need to change along with the digital changes

in financial systems.

3.DATA SET

A.A. Source of Dataset

The dataset used in this project includes detailed records
of individual transactions from a simulated or
anonymized real-world e-commerce system. Each entry
in the dataset is for a single transaction and includes
extra information that helps determine if the transaction
is real or fake. The dataset was imported and examined
in the Jupyter notebook called fraud_detection.ipynb,
and it was used to train and test the supervised learning

model.

B. B. Dataset Summary Statistics

The dataset has some basic stats that give an idea of
what’s included. Here’s a general overview: Total
number of records is around 50,000, just as an example.
About 2% of these are fraudulent transactions, which

means there’s an unequal spread between normal and

fraudulent cases. The average transaction amount
changes depending on the type of product being bought.
The average time a customer has been using the account
varies, from new users to those who have been around
for a long time. The devices people use are mostly mobile
phones, followed by desktop computers, and then
tablets, based on how they’re used.

TABLE I
FEATURE

DESCRIPTION OF TRANSACTION

Feature Name Description

Transaction Total monetary value of the transaction.

Amount

Payment Method Type of payment used: Debit Card, Credit
Card, PayPal, Bank Transfer.

Product Category Category of the item purchased (e.g.,

Electronics, Toys, Clothing).

Customer Age Age of the customer performing the

transaction.

Device Used Type of device used for the transaction:
Desktop, Mobile, or Tablet.

Account Age Days Age of the customer’s account in days.

Transaction Hour Hour of the day when the transaction
occurred
(0-23).

Day Day of the month when the transaction
occurred.

Month Month of the year when the transaction
occurred.

Class Target label (0 = Genuine, 1 = Fraudulent).

DATASET

C. Data Preprocessing

1) Handling Missing Values: Data quality is very important
when training strong machine learning models. When
we first looked at the dataset, we found missing or null
values in some numerical fields like Transaction
Amount, Customer Age, or Account Age. We took steps
to fix these issues. The methods we used were:

- For numerical fields, missing values were filled in
using either the average or the middle value, depending
on how the data was spread out.

- For categorical fields, missing values were replaced
with a default option or the most common category.

- In some cases, we chose to remove rows that had too
many missing values or unusual data points to keep the
model accurate and reliable.

This process helps make sure the model doesn’t have
problems or unfair results because of missing or bad
data.

35 International Journal for Modern Trends in Science and Technology

4. MACHINE LEARNING MODEL
A. Model Selection Rationale
Because the dataset had a table format with both
categorical and numerical data, and because some
classes were not balanced, we chose a decision tree-based
model. Models like Random Forest and Gradient
Boosted Trees (like XGBoost or LightGBM) are good at
dealing with different types of data, they don’t need
much preparation, and they can handle strange values
well.
For this project, we picked the Random Forest Classifier
because: - It's easier to understand compared to other
models that are harder to explain.

- It works well with imbalanced binary classification
problems.

- It automatically gives information about which
features are most important.

- It can avoid overfitting if tuned correctly.

B. Evaluation Metrics Used

Because fraud detection usually has a lot more normal
transactions than fraudulent ones, using just accuracy
wasn’t enough. So, these other measures were used
instead: ® Precision: Shows how many of the transactions
marked as fraud really were fraud.

e Recall: Shows how many of the real fraud cases
werecaught.

e F1-Score: Balances precision and recall, making
itgood for situations where there are unequal numbers of
classes.

e ROC-AUC Score: Helps see how well the model
cantell the difference between normal and fraud
transactions at different settings.

e Confusion Matrix: Shows the different types of
correctand incorrect predictions visually.

All of these helped give a full picture of how well the

model worked in different ways.

C. Model Performance Comparison

Models were evaluated on the test set using the above
metrics. Example summary: Random Forest offered a
TABLE II MODEL PERFORMANCE COMPARISON

Model Precision | Recall | F1-Score | AUC-ROC
Logistic 0.62 048 0.54 0.71
Regression

Decision Tree 0.75 0.65 0.70 0.80
Random Forest | 0.83 0.74 0.78 0.87
XGBoost 0.84 0.73 0.78 0.88

compelling balance between performance and simplicity,

with strong recall and AUC values.

D. Final Model Description
The this

RandomForestClassifier from the scikit-learn library.

final model wused in study is a
This algorithm was selected because it is strong, easy to
understand, and works well with different types of table
data. The model was set up with 100 trees (n_estimators
=100), which gives a good balance between how accurate
it is and how fast it runs. The maximum depth of each
tree wasn't limited, allowing them to grow as needed,
while the minimum number of samples needed to split a
node was set to 2, which helps split the data more finely.
To deal with the imbalance in the data, where some types
of transactions are less common, the class_weight
parameter was set to balanced, so that less common
transactions, like fraudulent ones, are given more
attention during training. The model trained quickly,
making it easy to update often or use in real-time
systems. When making predictions, it was very fast,
taking less than a millisecond, which is perfect for
real-time fraud detection.

Looking at which features were most important,
Transaction Amount, Account Age, and Device Used
were the top predictors for spotting fraud. Features like
Product Category and Customer Age were somewhat
helpful, but not as much. Time-related features like
Month, Day, and Transaction Hour had a smaller impact.
This shows the model can pick up on key details about
transactions and user behavior, which are important for

telling the difference between real and fake transactions.

5. SYSTEM ARCHITECTURE

A. High Level Architecture

User Interface
(Streamlit App)

Input Processor
Streamlit Form

Machine Learning
Pickle Model

Fig. 1.Architecture Diagram
The architecture shown in Fig.1 shows the whole process
of the real-time fraud detection system. The system has
three main parts — the User Interface, the Input
Processor, and the Machine Learning Model — all

connected together to provide quick fraud predictions.

36 International Journal for Modern Trends in Science and Technology

The User Interface is made using Streamlit and acts as
the front part of the system where users can interact with
it. It has a simple form where users can enter details
about a transaction, like the amount, payment method,
how long the account has been open, and the type of
device used. Once the user submits this information, it
goes to the Input Processor. This part of the system is in
charge of preparing and organizing the input data into a
format that the machine learning model can use. It
includes converting categories into numbers, checking if
numerical values are within the right range, and making
sure the data matches the format used during training.
The processed data is then sent to the Machine Learning
Model. This model has already been trained and saved
using Python’s Pickle module so it can be loaded quickly
and efficiently. The model does a real-time check on each
transaction, deciding if it is fraudulent or not. The result
of this check is sent back to the User Interface and shown
in an easy-to-read way, often with visual signs and
simple explanations.

This setup with separate parts makes it easier for the
front-end and back-end to work together smoothly,
allowing the system to detect fraud quickly, handle more

transactions, and be simple to set up and use.

B. Data Flow Diagram

Preprocessing &

i f
Encoding Model Inference

User Input Prediction Display

Fig. 2.Data Flow Diagram

The diagram in Fig.2 shows how data moves through the
fraud detection system, step by step, from when a user
interacts with it to when the final prediction is shown.
The process starts with User Input, where details like
transaction amount, account age, payment method, and
device type are entered using the Streamlit interface.

Then, the data goes through the Preprocessing and
Encoding stage. In this step, categories are turned into
numbers, missing data is dealt with, and continuous
features are adjusted to fit the format the model was
trained on. This makes sure all the input data follows the

same structure the machine learning model expects.

6. COMPONENTS OVERVIEW
The system’s design includes three main partsthe

Backend Machine Learning Model, the Input Layer

which is a Streamlit form, and the Frontend Interface
which is a Streamlit user interfacealong with important
deployment and styling files that help the system work

smoothly and stay easy to maintain.

A. Backend: Machine Learning Model

The system’s backend uses a supervised machine
learning classifier that has been trained on past
transaction data to tell the difference between fraudulent
and normal transactions. Once the model is trained, it is
saved using Python’s Pickle module as model.pkl,
making it simple to load and use when the system is
running.

When a user enters transaction details through the
interface, the backend takes that information and
organizes it into a Pandas DataFrame. It then applies the
needed steps to prepare the data and passes it to the
model’s predict() function. The model then processes the
input and gives a result that is either 1 (meaning the
transaction is fraudulent) or 0 (meaning it's genuine).
This setup allows the system to respond quickly and
makes it easy to update or replace the model with new

data as it becomes available.

B. Input Layer: Streamlit Form

The Streamlit form acts as the connection between the
user and the machine learning model. It gathers
important details about each transaction, including the
Transaction Amount, Customer Age, Account Age (in
days), Transaction Time (broken down into Hour, Day,
and Month), Payment Method, Product Category, and
Device Type.

Features that are categorical, such as Payment Method or
Product Category, are converted into a format that
matches the one used when the model was trained. This
ensures that the data entered by the user fits the
structure the model expects. This layer makes it easier for
users to interact with the system and also helps in
keeping the input process consistent, reducing the
chances of errors or mismatched data formats when the

model makes predictions.

C. Frontend Interface: Streamlit Ul

The frontend interface is built with Streamlit and offers
an interactive and easy-to-use environment for
predicting fraud. Users can input transaction details and
start the model prediction by clicking the "Predict Fraud

Status" button. The result appears right away in the same

37 International Journal for Modern Trends in Science and Technology

interface, clearly marked as either Fraudulent or
Genuine, making it simple for even non-technical users
to understand.

To improve the user experience, the interface includes
several informative sections. One part explains each
input field, helping users understand why certain details
are important. Another section provides helpful tips on
how to keep transactions secure. The interface also looks
better and more professional thanks to custom CSS and
Markdown styling, giving it a modern and polished

appearance similar to typical web applications.

D. Deployment Model

The prototype is currently running locally by using the
command ‘streamlit run app.py’. When the application
starts, it loads the saved model file (‘model.pkl’) using
‘pickle.load()’, which prepares it to accept user inputs
and deliver predictions in real time. Because the model
processes each input individually instead of handling
multiple requests at once, it ensures quick response times
with very low delay.

Looking ahead, the system is built with scalability in
mind. The whole application can be wrapped into a
Docker container, making it easy to deploy consistently
across different environments. The backend can be
enhanced with either Flask or FastAPI to provide a REST
API interface, making it possible to connect the
prediction service with other systems. Additionally, the
frontend can be hosted on cloud platforms like Streamlit
Cloud, Heroku, or AWS, which allows the service to be
accessed globally and easily scaled as the number of

transactions grows.

E. System Characteristics

The proposed fraud detection system has several key
features that make it both practical and easy to expand. It
uses a modular structure, with parts like the user
interface, model logic, and data preprocessing separated,
which allows each part to be updated or fixed without
affecting the others.

The system is designed to provide quick results, which is
important for making decisions in real time within
financial systems. It is also flexible, able to work with
realtime data sources such as Apache Kafka or MQTT,
and can be scaled up to handle large operations using
cloud-based setups.

In terms of security, the system includes ways to check

and validate incoming data to stop faulty or harmful

requests. Future improvements might involve adding
user login and permission controls to boost security
further. These features together make the system reliable,
fast, and able to handle the demands of today’s fraud

detection needs.

7. MODEL DEPLOYEMENT

A. Model Serialization and Backend Architecture

To enable real-time inference without retraining, the
trained machine learning model was serialized using
Python'’s built-in Pickle module. This allows the model to
be saved along with all of its learned parameters and
structure into a file named model.pkl, which can be
reloaded during runtime. The serialization ensures a
lightweight deployment and efficient model utilization
without the need for access to the training dataset.

The backend architecture, implemented within the
app.py file, manages the entire inference workflow.
When the application starts, the serialized model is
loaded using the pickle.load() function. Once user inputs
are received from the Streamlit interface, the backend
processes these inputs by encoding categorical values to
match the format used during training and organizing all
input features into a structured pandas DataFrame. The
preprocessed input is then passed to the model’s
predict() method, which produces a binary output—1 for
fraudulent transactions and 0 for legitimate ones. The
result is dynamically displayed to the user through
intuitive labels such as Fraudulent or Genuine, ensuring
instant and interpretable feedback. This modular
high

latency, and easy maintainability.

architecture guarantees responsiveness, low

B. Streamlit Integration and Deployment Strategy

The whole system is built into a Streamlit web app,
which acts as both the user interface and the place where
the model runs. Streamlit makes it easy to create a Ul
using simple Python code and allows users to interact
with the app through widgets that let them input and
view data in real time. When someone fills out a form,
the data is automatically organized into a table format
called a DataFrame and sent to the model for predictions.
The results are shown right on the page using Streamlit
tools like st.success() and st.warning(), so the user gets
instant updates without needing to refresh the page.

To keep things running smoothly, basic checks are done

on the input data. Streamlit widgets like number_input()

38 International Journal for Modern Trends in Science and Technology

and selectbox() help ensure that users enter valid data,
like numbers within a certain range or correct choices
from a list. In the future, more advanced checks, such as
checking data against a set of rules or spotting unusual
patterns, will be added.

Right now, the app runs locally by using the command
streamlit run app.py, which starts the app on a web page
at http://localhost:8501. For use in a real-world setting,
there are several ways to deploy the system. It can be put
online with Streamlit Cloud, which needs little setup. It
can also be packaged into a Docker container for easier
use across different computers or environments. Another
option is to host it on cloud services like AWS EC2,
Google App Engine, or Heroku. Additionally, the back
end can be made into a RESTful API using Flask or
FastAPI, making it possible to connect the app with

bigger financial systems and data streams in real time.

8. WEB APPLICATION AND USER INTERFACE

A. Streamlit Framework and Interface Design

The web application is built using Streamlit, an
opensource Python framework that makes it easy to
create interactive machine learning interfaces without
needing to know HTML, CSS, or JavaScript. Streamlit
handles all the user interaction part of the system, letting
users enter transaction details through a web browser
and get instant fraud predictions.

The interface has a simple and user-friendly design. The
inputs are arranged in a logical way using a
three-column layout to make things easier to read. The
results of the predictions are shown clearly with emojis
and colored indicators, such as Genuine and Fraudulent.
The interface also works well on different screen sizes, so

it looks good on phones, tablets, and computers.

@ Real-Time Fraud Detection System

et o legtimate.

Enter Transaction Details

Fig. 3.User Interface

To make the app look better, a custom style.css file is
used, which changes the fonts, spacing, and appearance
of the elements to give a clean and professional look.
User information is gathered through Streamlit’s form
elements. Numerical details like transaction amount,
customer age, and account age are entered using
st.number_input(). Categorical options such as payment
method, product category, and device type are picked
using st.selectbox(). Time-related features like hour, day,
and month are selected with st.slider(). All the inputs are
checked and converted into the same format used during
training before being sent for prediction.

When the "Predict Fraud Status" button is pressed,
Streamlit collects all the input data, puts it into a single
row of a table, and sends it to the preloaded model. The
prediction result is then shown right away using special
Ul elements like st.success() or st.warning(), which
makes the experience smooth and interactive. Extra
sections, such as explanations of the features and tips for
preventing fraud, help users understand how the system

works and make better decisions.

B. User Guide and Operational Workflow

The prediction process is simple to follow. The user
enters the transaction amount, selects the payment
method and product category, specifies the device type,
inputs customer and account age, and chooses the
transaction timestamp. Once the form is submitted, the
system processes the input and classifies the transaction.
A "Genuine" output means the transaction is low risk,
while a "Fraudulent" output suggests suspicious activity.
These labels are shown with color-coded visuals for easy

understanding.

Prediction Result

Fig. 4.Prediction Output
Users can explore expandable sections like “What do
these fields mean?” to get detailed explanations of each
feature and “Fraud Prevention Tips” for useful security
multi-factor authentication,

advice, including

39 International Journal for Modern Trends in Science and Technology

monitoring for unusual login behavior, and setting
transaction limits. Examples of input and output are also
provided, showing how the model’s predictions differ
between low-risk and high-risk situations.

Troubleshooting instructions help users resolve common
problems such as missing dependencies, incorrect
Python versions, or the absence of the model.pkl file.
With this thorough guidance, both technical and
non-technical users can easily use, understand, and

interpret the fraud detection system.

9. CONCLUSIONS

The Real-Time Fraud Detection System created in this
project effectively shows how machine learning can be
used to tackle one of the biggest challenges in finance
and online shopping—spotting fraud before it causes

harm. Using a well-organized set of transaction data,

@ Real-Time Fraud Detection System

Enter Transaction Details

Fig. 5.Explanation Panel
the system uses supervised learning methods, especially
Random Forest, to determine if a transaction is
fraudulent or safe, and it performs very well. The project
includes a full process from collecting and preparing
data, creating useful features, training and testing the
model, to putting it into use through a web app made
with Streamlit. This highlights the strength of applying
machine learning in real situations and also makes it easy
for people without technical skills to use the model live.
A big success of this system is that it keeps a good
balance between how well it works and how easy it is to
understand. Important factors like the amount of the
transaction, how long the account has been open, and the
type of device used were found to have a big impact on
identifying fraud. By focusing on these key elements and
adding clear visual feedback in the user interface, the
system builds trust and makes its decisions more
transparent. Even though there are some limitations, like
having too many nonfraudulent transactions and not

having live data, the current version is very flexible and

can be expanded. Future improvements, including
real-time data flow, tools to explain the model’s
decisions like SHAP and LIME, an API setup, and
cloud-based deployment, will make the system even
better and ready for real-world use. This project offers
more than just a technical answer—it also provides a
guide for responsibly using Al in fraud detection. It
shows best practices in handling data, testing models,
integrating them with user interfaces, and being aware of
security issues, which can help future projects in similar
areas. In the end, this system shows how machine
learning, when carefully designed and used responsibly,
can greatly cut down on fraud and improve trust in

digital financial systems.

APPENDIX

The appendix offers a comprehensive look at the core
implementation and usability aspects of the fraud
detection system. The backend model, built using a
supervised machine learning classifier, was saved using
Python’s pickle module, allowing for quick loading and
real-time predictions without the need for retraining.
The system workflow involves loading the model at
runtime, preprocessing and encoding user inputs,
organizing them into a Pandas DataFrame, and applying
the model’s predict() function to generate results.
Streamlit serves as the foundation for the user interaction
layer, offering interactive input fields, responsive design
elements, and visually clear prediction outputs. The
interface features numerical fields, categorical options,
sliders for time-related inputs, and styled results using
custom CSS for better readability. Additional Ul
components such as feature explanations and fraud
prevention suggestions help users grasp the system’s
functionality and ensure transparency in its application.
In addition, the appendix outlines key instructions for
running and engaging with the system. The application
requires Python 3.7 or newer and standard data science
libraries, which can be installed via a requirements.txt
file. The system is executed locally by running the

run app.py,
browser-based interface.

command streamlit which opens a

Conflict of interest statement
Authors declare that they do not have any conflict of

interest.

40 International Journal for Modern Trends in Science and Technology

REFERENCES

(1

(2]

(3]

(4]

(5]

6]

(7

(8]

(%1

(10]

(11]

(12]

(13]

[14]

[15]

(16]

(17]

(18]

Bettinger, A., “FINTECH: A Series of 40 Time Shared Models Used
at Manufacturers Hanover Trust Company,” Interfacec, vol. 2, pp.
62-63, 1972.

Thakor, A. V., “Fintech and Banking: What Do We Know?,”
Journal of Financial Intermediation, vol. 41, 2020.

Arner, D. W,, Barberis, J., and Buckley, R. P., “The Evolution of
FinTech: A New Post-Crisis Paradigm?,” Georgetown Journal of
International Law, vol. 47, pp. 1271-1319, 2016. Available:Fraud
Detection,” Proc. 2019 IEEE/ACS 16th International Conference on
Computer Systems and Applications (AICCSA), Abu Dhabi, UAE,
pp. 1-6, 2019.

PwC, “PwC’s Global Economic Crime and Fraud Survey 2020.”
Available:
30-Nov-2020].
ACFE, “2020ACFE Report to the
https://www.acfe.com/report-to-the-nations/2020/.
11-Nov-2020].
Investopedia,

https://www.pwc.com/fraudsurvey. [Accessed:

Available:

[Accessed:

Nations.”

“Fraud
https://www.investopedia.com/terms/f/fraud.asp.
15-Dec-2020].

Chalapathy, R, and Chawla, S., “Deep Learning for Anomaly
Detection: A Survey,” arXiv:1901.03407, 2019.

Zimek, A., and Schubert, E., “Outlier Detection,” Encyclopedia of

Available:

[Accessed:

Definition.”

Database Systems, Springer, pp. 1-5, 2017.

“Credit Card Fraud Detection Dataset.”
https://www kaggle.com/mlg-ulb/creditcardfraud.
30-Nov-2020].

Kaggle,

Available:

[Accessed:

Kaggle,

Available:
https://www kaggle.com/apoorvwatsky/bank-transaction-data.
[Accessed: 30-Nov-2020].

Kaggle,

“Bank Transaction Data.”

Available:
[Accessed:

Data.”
https://www kaggle.com/bigquery/bitcoin-blockchain.
30-Nov-2020].

UCI ML Repository, “Machine Learning Repository.” Available:
https://archive.ics.uci.edu/ml/index.php. [Accessed: 11-Nov-2020].
Kaggle, “Synthetic Data from a Financial Payment System
(BankSim).” Available:
https://www kaggle.com/ntnutestimon/banksim1. [Accessed:
30-Nov-2020].

Lopez-Rojas, E. A. Elmir, A, and Axelsson, S., “PaySim: A

“Bitcoin Blockchain Historical

Financial Mobile Money Simulator for Fraud Detection,” Proc. 28th
European Modeling and Simulation Symposium (EMSS), Larnaca,
Cyprus, pp. 26-28, 2016.

Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., and Bontempi,
G., “Credit Card Fraud Detection and Concept-Drift Adaptation
with Delayed Supervised Information,” Proc. 2015 International
Joint Conference on Neural Networks (IJCNN), Killarney, Ireland,
pp. 1-8, 2015.

Dal Pozzolo, A., Boracchi, G., Caelen, O., Alippi, C., and Bontempi,
G., “Credit Card Fraud Detection: A Realistic Modeling and a
Novel Learning Strategy,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, no. 8, pp. 3784-3797, 2017.

Ma, T., Qian, S., Cao, J., Xue, G., Yu, J., Zhu, Y., and Li, M., “An
Unsupervised Incremental Virtual Learning Method for Financial
Somasundaram, A., and Reddy, S. “Parallel and Incremental
Credit Card Fraud Detection Model to Handle Concept Drift and

41

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Data Imbalance,” Neural Computing and Applications, vol. 31, pp.
3-14, 2019.

Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., and Sun, X., “The
Application of Data Mining Techniques in Financial Fraud
Detection: A Classification Framework and Review,” Decision
Support Systems, vol. 50, pp. 559-569, 2011.

Ahmed, M., Mahmood, A. N., and Islam, M. R., “A Survey of
Anomaly Detection Techniques in the Financial Domain,” Future
Generation Computer Systems, vol. 55, pp. 278-288, 2016.

Ahmed, M., Choudhury, N., and Uddin, S., “Anomaly Detection
on Big Data in Financial Markets,” Proc. IEEE/ACM ASONAM,
Sydney, Australia, pp. 998-1001, 2017.

Abdallah, A., Aizaini, M., and Zainal, M. A., “Fraud Detection
System: A Survey,” Journal of Network and Computer
Applications, vol. 68, pp. 90-113, 2016.

Gai, K., Qiu, M., and Sun, X.,, “A Survey on FinTech,” Journal of
Network and Computer Applications, vol. 103, pp. 262-273, 2018.
Ryman-Tubb, N. F.,, Krause, P. J., and Garn, W., “How Artificial
Intelligence and Machine Learning Research Impacts Payment
Card Fraud Detection: A Survey,” Engineering Applications of
Artificial Intelligence, vol. 76, pp. 130-157, 2018.

West,], and Bhattacharya, M., “Intelligent Financial Fraud
Detection: A Comprehensive Review,” Computers & Security, vol.
57, pp.47-66, 2016.

International Journal for Modern Trends in Science and Technology

