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The project introduces a sophisticated real-time Fraud Detection System that uses machine 

learning to determine if online financial transactions are fraudulent or legitimate. As more 

payments are made online, it’s become extremely important to spot fraud quickly to keep 

financial systems safe and build customer confidence. The system uses supervised learning, 

which means it’s trained on big sets of transaction data that include different details like the 

amount of the transaction, when it happened, the age of the customer, how long they’ve had 

the account, what payment method was used, what product was bought, and the type of 

device used. 

Before the data is used to train the models, it goes through a detailed cleaning process to 

make sure the results are accurate and dependable. This involves fixing missing data, 

converting categories into numbers that computers can use, making sure all numbers are in 

the right range, and finding any unusual data points. The system also uses feature 

engineering to create new useful information that helps the model make better decisions. 

Several machine learning models, like Logistic Regression, Random Forest, Gradient 

Boosting, and XGBoost, are trained and tested using measures like accuracy, precision, 

recall, F1score, and ROC-AUC. This helps identify which model works best for the job. 

Once the best model is chosen, it’s saved using Pickle so it can be used in real-time. The front 

end of the system is built with Streamlit, making it easy to use and visually appealing. Users 

can enter transaction details manually or upload files. When they submit the data, the 

system quickly analyzes it and gives a result showing if the transaction is real or fake. The 

results are shown using clear signs and visuals, like colored labels and charts, so users can 

understand them easily. 
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To help users and businesses understand the system better, the interface includes clear 

explanations of each feature, insights into how the model makes decisions, and advice on 

how to prevent fraud. The design is also made more professional and easy to use with custom 

CSS styling. 

Overall, this project shows how machine learning can be used to tackle financial fraud. The 

system is designed to be scalable, easy to understand, and fast, making it a strong tool for 

improving security and trust in online transactions. It can be easily connected to existing 

financial platforms to offer better protection. 

 

1. INTRODUCTION 

The project introduces a smart real-time Fraud 

Detection System that uses machine learning to check if 

online financial transactions are fake or real. As more 

people make payments online, it’s very important to 

catch fraud quickly to protect financial systems and 

build trust with customers. The system uses supervised 

learning, which means it’s trained on large amounts of 

transaction data that includes various details like the 

amount of the transaction, the time it happened, the 

customer’s age, how long they’ve had the account, the 

payment method used, the product bought, and the type 

of device used. 

Before the data is used to train the models, it goes 

through a detailed cleaning process to make sure the 

results are accurate and reliable. This includes fixing 

missing data, changing categories into numbers that 

computers can use, making sure all numbers are in the 

right range, and finding any strange or unusual data 

points. The system also uses feature engineering to create 

new useful information that helps the model make better 

decisions. 

Several machine learning models, such as Logistic 

Regression, Random Forest, Gradient Boosting, and 

XGBoost, are trained and tested using metrics like 

accuracy, precision, recall, F1-score, and ROC-AUC. This 

helps determine which model works best for the task. 

Once the best model is selected, it is saved using Pickle 

so it can be used in real-time. The front end of the system 

is built with Streamlit, making it simple to use and 

visually appealing. Users can enter transaction details 

manually or upload files. When they submit the data, the 

system quickly analyzes it and provides a result showing 

whether the transaction is real or fake. The results are 

shown using clear labels and visuals, like colored signs 

and charts, so users can understand them easily. 

To help users and businesses better understand the 

system, the interface includes clear explanations of each 

feature, insights into how the model makes decisions, 

and tips on how to prevent fraud. The design is also 

made more professional and user-friendly with custom 

CSS styling. 

Overall, this project demonstrates how machine 

learning can be used to fight financial fraud. The system 

is designed to be scalable, easy to understand, and fast, 

making it a strong tool for improving security and trust 

in online transactions. It can be easily integrated with 

existing financial platforms to offer better protection. 

 

2. LITERATURE SURVEY 

[1] Bettinger’s work is one of the earliest examples of 

financial technology (FinTech) application in banking, 

illustrating how a series of 40 time-shared models were 

deployed at Manufacturers Hanover Trust Company to 

optimize banking operations. This pioneering effort is 

notable for setting the stage for modern FinTech 

developments by demonstrating the efficiency gains 

achievable through technology-driven banking systems. 

These models supported various financial functions 

including customer account management, fraud 

detection, and service delivery optimization. Even 

though the computing systems were primitive by today’s 

standards, the approach reflected an early vision of 

distributed computing and automation in financial 

services. Bettinger’s study is often referenced as a 

historical anchor that prefaces the rapid development of 

digital financial platforms. For customer segmentation, 

the use of shared models introduced the idea of 

centralized analytics feeding multiple service 

touchpoints—concepts now seen in cloud-based CRM 

and segmentation engines. 

[2]Thakor gives a detailed look at how the FinTech 

industry is affecting traditional banks. He talks about 

changes in how businesses operate, the rules they have 

to follow, and how customers are behaving differently. 

The paper explains how FinTech companies use digital 

tools to provide customer-focused services like 

personalized loans, managing money, and detecting 
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fraud. Thakor also looks at how FinTech startups are 

competing with traditional banks, showing how their 

fast-moving and technologybased approaches are 

challenging older banking systems. He points out that 

using data analysis is key for FinTech businesses to 

better understand and serve their customers. He also 

discusses risks like cyber attacks and privacy issues, 

especially with open banking. The study shows how 

FinTech can improve customer understanding by using 

data from places like social media, mobile apps, and 

spending habits. 

[3]This paper looks at how FinTech changed a lot after 

the 2008 financial crisis. Arner and other writers say that 

the financial problem helped push for new technology in 

banking and finance. This happened because of changes 

in rules, people losing trust in old banks, and new tech 

developments. The paper breaks down the main steps in 

FinTech’s growth, starting with digital banking services 

and moving on to blockchain, AI, and better data 

analysis. It also explains how companies can connect 

better with customers by using smart ways to group 

people, which lets them give personalized services based 

on how people behave. The authors also point out that 

things like DeFi and peer-to-peer lending are changing 

how customers and businesses interact. This paper is 

important for understanding how customer grouping 

strategies need to change along with the digital changes 

in financial systems. 

3. DATA SET 

A. A. Source of Dataset 

The dataset used in this project includes detailed records 

of individual transactions from a simulated or 

anonymized real-world e-commerce system. Each entry 

in the dataset is for a single transaction and includes 

extra information that helps determine if the transaction 

is real or fake. The dataset was imported and examined 

in the Jupyter notebook called fraud_detection.ipynb, 

and it was used to train and test the supervised learning 

model. 

B. B. Dataset Summary Statistics 

The dataset has some basic stats that give an idea of 

what’s included. Here’s a general overview: Total 

number of records is around 50,000, just as an example. 

About 2% of these are fraudulent transactions, which 

means there’s an unequal spread between normal and 

fraudulent cases. The average transaction amount 

changes depending on the type of product being bought. 

The average time a customer has been using the account 

varies, from new users to those who have been around 

for a long time. The devices people use are mostly mobile 

phones, followed by desktop computers, and then 

tablets, based on how they’re used. 

TABLE I 

FEATURE DESCRIPTION OF TRANSACTION 

DATASET 

C. Data Preprocessing 

1) Handling Missing Values: Data quality is very important 

when training strong machine learning models. When 

we first looked at the dataset, we found missing or null 

values in some numerical fields like Transaction 

Amount, Customer Age, or Account Age. We took steps 

to fix these issues. The methods we used were: 

- For numerical fields, missing values were filled in 

using either the average or the middle value, depending 

on how the data was spread out. 

- For categorical fields, missing values were replaced 

with a default option or the most common category. 

- In some cases, we chose to remove rows that had too 

many missing values or unusual data points to keep the 

model accurate and reliable. 

This process helps make sure the model doesn’t have 

problems or unfair results because of missing or bad 

data. 

Feature Name Description 

Transaction 

Amount 

Total monetary value of the transaction. 

Payment Method Type of payment used: Debit Card, Credit 

Card, PayPal, Bank Transfer. 

Product Category Category of the item purchased (e.g., 

Electronics, Toys, Clothing). 

Customer Age Age of the customer performing the 

transaction. 

Device Used Type of device used for the transaction: 

Desktop, Mobile, or Tablet. 

Account Age Days Age of the customer’s account in days. 

Transaction Hour Hour of the day when the transaction 

occurred 

(0–23). 

Day Day of the month when the transaction 

occurred. 

Month Month of the year when the transaction 

occurred. 

Class Target label (0 = Genuine, 1 = Fraudulent). 



  

 

 
36     International Journal for Modern Trends in Science and Technology 

 

 

4. MACHINE LEARNING MODEL 

A. Model Selection Rationale 

Because the dataset had a table format with both 

categorical and numerical data, and because some 

classes were not balanced, we chose a decision tree-based 

model. Models like Random Forest and Gradient 

Boosted Trees (like XGBoost or LightGBM) are good at 

dealing with different types of data, they don’t need 

much preparation, and they can handle strange values 

well. 

For this project, we picked the Random Forest Classifier 

because: - It’s easier to understand compared to other 

models that are harder to explain. 

- It works well with imbalanced binary classification 

problems. 

- It automatically gives information about which 

features are most important. 

- It can avoid overfitting if tuned correctly. 

B. Evaluation Metrics Used 

Because fraud detection usually has a lot more normal 

transactions than fraudulent ones, using just accuracy 

wasn’t enough. So, these other measures were used 

instead: • Precision: Shows how many of the transactions 

marked as fraud really were fraud. 

• Recall: Shows how many of the real fraud cases 

werecaught. 

• F1-Score: Balances precision and recall, making 

itgood for situations where there are unequal numbers of 

classes. 

• ROC-AUC Score: Helps see how well the model 

cantell the difference between normal and fraud 

transactions at different settings. 

• Confusion Matrix: Shows the different types of 

correctand incorrect predictions visually. 

All of these helped give a full picture of how well the 

model worked in different ways. 

C. Model Performance Comparison 

Models were evaluated on the test set using the above 

metrics. Example summary: Random Forest offered a 

TABLE II MODEL PERFORMANCE COMPARISON 

Model Precision Recall F1-Score AUC-ROC 

Logistic 

Regression 

0.62 0.48 0.54 0.71 

Decision Tree 0.75 0.65 0.70 0.80 

Random Forest 0.83 0.74 0.78 0.87 

XGBoost 0.84 0.73 0.78 0.88 

compelling balance between performance and simplicity, 

with strong recall and AUC values. 

D. Final Model Description 

The final model used in this study is a 

RandomForestClassifier from the scikit-learn library. 

This algorithm was selected because it is strong, easy to 

understand, and works well with different types of table 

data. The model was set up with 100 trees (n_estimators 

= 100), which gives a good balance between how accurate 

it is and how fast it runs. The maximum depth of each 

tree wasn’t limited, allowing them to grow as needed, 

while the minimum number of samples needed to split a 

node was set to 2, which helps split the data more finely. 

To deal with the imbalance in the data, where some types 

of transactions are less common, the class_weight 

parameter was set to balanced, so that less common 

transactions, like fraudulent ones, are given more 

attention during training. The model trained quickly, 

making it easy to update often or use in real-time 

systems. When making predictions, it was very fast, 

taking less than a millisecond, which is perfect for 

real-time fraud detection. 

Looking at which features were most important, 

Transaction Amount, Account Age, and Device Used 

were the top predictors for spotting fraud. Features like 

Product Category and Customer Age were somewhat 

helpful, but not as much. Time-related features like 

Month, Day, and Transaction Hour had a smaller impact. 

This shows the model can pick up on key details about 

transactions and user behavior, which are important for 

telling the difference between real and fake transactions. 

 

5. SYSTEM ARCHITECTURE 

A. High Level Architecture 

 
 Fig. 1.Architecture Diagram 

The architecture shown in Fig.1 shows the whole process 

of the real-time fraud detection system. The system has 

three main parts — the User Interface, the Input 

Processor, and the Machine Learning Model — all 

connected together to provide quick fraud predictions. 
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The User Interface is made using Streamlit and acts as 

the front part of the system where users can interact with 

it. It has a simple form where users can enter details 

about a transaction, like the amount, payment method, 

how long the account has been open, and the type of 

device used. Once the user submits this information, it 

goes to the Input Processor. This part of the system is in 

charge of preparing and organizing the input data into a 

format that the machine learning model can use. It 

includes converting categories into numbers, checking if 

numerical values are within the right range, and making 

sure the data matches the format used during training. 

The processed data is then sent to the Machine Learning 

Model. This model has already been trained and saved 

using Python’s Pickle module so it can be loaded quickly 

and efficiently. The model does a real-time check on each 

transaction, deciding if it is fraudulent or not. The result 

of this check is sent back to the User Interface and shown 

in an easy-to-read way, often with visual signs and 

simple explanations. 

This setup with separate parts makes it easier for the 

front-end and back-end to work together smoothly, 

allowing the system to detect fraud quickly, handle more 

transactions, and be simple to set up and use. 

B. Data Flow Diagram 

 
 Fig. 2.Data Flow Diagram 

The diagram in Fig.2 shows how data moves through the 

fraud detection system, step by step, from when a user 

interacts with it to when the final prediction is shown. 

The process starts with User Input, where details like 

transaction amount, account age, payment method, and 

device type are entered using the Streamlit interface. 

Then, the data goes through the Preprocessing and 

Encoding stage. In this step, categories are turned into 

numbers, missing data is dealt with, and continuous 

features are adjusted to fit the format the model was 

trained on. This makes sure all the input data follows the 

same structure the machine learning model expects. 

6. COMPONENTS OVERVIEW 

The system’s design includes three main partsthe 

Backend Machine Learning Model, the Input Layer 

which is a Streamlit form, and the Frontend Interface 

which is a Streamlit user interfacealong with important 

deployment and styling files that help the system work 

smoothly and stay easy to maintain. 

A. Backend: Machine Learning Model 

The system’s backend uses a supervised machine 

learning classifier that has been trained on past 

transaction data to tell the difference between fraudulent 

and normal transactions. Once the model is trained, it is 

saved using Python’s Pickle module as model.pkl, 

making it simple to load and use when the system is 

running. 

When a user enters transaction details through the 

interface, the backend takes that information and 

organizes it into a Pandas DataFrame. It then applies the 

needed steps to prepare the data and passes it to the 

model’s predict() function. The model then processes the 

input and gives a result that is either 1 (meaning the 

transaction is fraudulent) or 0 (meaning it’s genuine). 

This setup allows the system to respond quickly and 

makes it easy to update or replace the model with new 

data as it becomes available. 

B. Input Layer: Streamlit Form 

The Streamlit form acts as the connection between the 

user and the machine learning model. It gathers 

important details about each transaction, including the 

Transaction Amount, Customer Age, Account Age (in 

days), Transaction Time (broken down into Hour, Day, 

and Month), Payment Method, Product Category, and 

Device Type. 

Features that are categorical, such as Payment Method or 

Product Category, are converted into a format that 

matches the one used when the model was trained. This 

ensures that the data entered by the user fits the 

structure the model expects. This layer makes it easier for 

users to interact with the system and also helps in 

keeping the input process consistent, reducing the 

chances of errors or mismatched data formats when the 

model makes predictions. 

C. Frontend Interface: Streamlit UI 

The frontend interface is built with Streamlit and offers 

an interactive and easy-to-use environment for 

predicting fraud. Users can input transaction details and 

start the model prediction by clicking the "Predict Fraud 

Status" button. The result appears right away in the same 
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interface, clearly marked as either Fraudulent or 

Genuine, making it simple for even non-technical users 

to understand. 

To improve the user experience, the interface includes 

several informative sections. One part explains each 

input field, helping users understand why certain details 

are important. Another section provides helpful tips on 

how to keep transactions secure. The interface also looks 

better and more professional thanks to custom CSS and 

Markdown styling, giving it a modern and polished 

appearance similar to typical web applications. 

D. Deployment Model 

The prototype is currently running locally by using the 

command ‘streamlit run app.py‘. When the application 

starts, it loads the saved model file (‘model.pkl‘) using 

‘pickle.load()‘, which prepares it to accept user inputs 

and deliver predictions in real time. Because the model 

processes each input individually instead of handling 

multiple requests at once, it ensures quick response times 

with very low delay. 

Looking ahead, the system is built with scalability in 

mind. The whole application can be wrapped into a 

Docker container, making it easy to deploy consistently 

across different environments. The backend can be 

enhanced with either Flask or FastAPI to provide a REST 

API interface, making it possible to connect the 

prediction service with other systems. Additionally, the 

frontend can be hosted on cloud platforms like Streamlit 

Cloud, Heroku, or AWS, which allows the service to be 

accessed globally and easily scaled as the number of 

transactions grows. 

E. System Characteristics 

The proposed fraud detection system has several key 

features that make it both practical and easy to expand. It 

uses a modular structure, with parts like the user 

interface, model logic, and data preprocessing separated, 

which allows each part to be updated or fixed without 

affecting the others. 

The system is designed to provide quick results, which is 

important for making decisions in real time within 

financial systems. It is also flexible, able to work with 

realtime data sources such as Apache Kafka or MQTT, 

and can be scaled up to handle large operations using 

cloud-based setups. 

In terms of security, the system includes ways to check 

and validate incoming data to stop faulty or harmful 

requests. Future improvements might involve adding 

user login and permission controls to boost security 

further. These features together make the system reliable, 

fast, and able to handle the demands of today’s fraud 

detection needs. 

 

7. MODEL DEPLOYEMENT 

A. Model Serialization and Backend Architecture 

To enable real-time inference without retraining, the 

trained machine learning model was serialized using 

Python’s built-in Pickle module. This allows the model to 

be saved along with all of its learned parameters and 

structure into a file named model.pkl, which can be 

reloaded during runtime. The serialization ensures a 

lightweight deployment and efficient model utilization 

without the need for access to the training dataset. 

The backend architecture, implemented within the 

app.py file, manages the entire inference workflow. 

When the application starts, the serialized model is 

loaded using the pickle.load() function. Once user inputs 

are received from the Streamlit interface, the backend 

processes these inputs by encoding categorical values to 

match the format used during training and organizing all 

input features into a structured pandas DataFrame. The 

preprocessed input is then passed to the model’s 

predict() method, which produces a binary output—1 for 

fraudulent transactions and 0 for legitimate ones. The 

result is dynamically displayed to the user through 

intuitive labels such as Fraudulent or Genuine, ensuring 

instant and interpretable feedback. This modular 

architecture guarantees high responsiveness, low 

latency, and easy maintainability. 

B. Streamlit Integration and Deployment Strategy 

The whole system is built into a Streamlit web app, 

which acts as both the user interface and the place where 

the model runs. Streamlit makes it easy to create a UI 

using simple Python code and allows users to interact 

with the app through widgets that let them input and 

view data in real time. When someone fills out a form, 

the data is automatically organized into a table format 

called a DataFrame and sent to the model for predictions. 

The results are shown right on the page using Streamlit 

tools like st.success() and st.warning(), so the user gets 

instant updates without needing to refresh the page. 

To keep things running smoothly, basic checks are done 

on the input data. Streamlit widgets like number_input() 
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and selectbox() help ensure that users enter valid data, 

like numbers within a certain range or correct choices 

from a list. In the future, more advanced checks, such as 

checking data against a set of rules or spotting unusual 

patterns, will be added. 

Right now, the app runs locally by using the command 

streamlit run app.py, which starts the app on a web page 

at http://localhost:8501. For use in a real-world setting, 

there are several ways to deploy the system. It can be put 

online with Streamlit Cloud, which needs little setup. It 

can also be packaged into a Docker container for easier 

use across different computers or environments. Another 

option is to host it on cloud services like AWS EC2, 

Google App Engine, or Heroku. Additionally, the back 

end can be made into a RESTful API using Flask or 

FastAPI, making it possible to connect the app with 

bigger financial systems and data streams in real time. 

8. WEB APPLICATION AND USER INTERFACE 

A. Streamlit Framework and Interface Design 

The web application is built using Streamlit, an 

opensource Python framework that makes it easy to 

create interactive machine learning interfaces without 

needing to know HTML, CSS, or JavaScript. Streamlit 

handles all the user interaction part of the system, letting 

users enter transaction details through a web browser 

and get instant fraud predictions. 

The interface has a simple and user-friendly design. The 

inputs are arranged in a logical way using a 

three-column layout to make things easier to read. The 

results of the predictions are shown clearly with emojis 

and colored indicators, such as Genuine and Fraudulent. 

The interface also works well on different screen sizes, so 

it looks good on phones, tablets, and computers. 

 
 Fig. 3.User Interface 

To make the app look better, a custom style.css file is 

used, which changes the fonts, spacing, and appearance 

of the elements to give a clean and professional look. 

User information is gathered through Streamlit’s form 

elements. Numerical details like transaction amount, 

customer age, and account age are entered using 

st.number_input(). Categorical options such as payment 

method, product category, and device type are picked 

using st.selectbox(). Time-related features like hour, day, 

and month are selected with st.slider(). All the inputs are 

checked and converted into the same format used during 

training before being sent for prediction. 

When the "Predict Fraud Status" button is pressed, 

Streamlit collects all the input data, puts it into a single 

row of a table, and sends it to the preloaded model. The 

prediction result is then shown right away using special 

UI elements like st.success() or st.warning(), which 

makes the experience smooth and interactive. Extra 

sections, such as explanations of the features and tips for 

preventing fraud, help users understand how the system 

works and make better decisions. 

B. User Guide and Operational Workflow 

The prediction process is simple to follow. The user 

enters the transaction amount, selects the payment 

method and product category, specifies the device type, 

inputs customer and account age, and chooses the 

transaction timestamp. Once the form is submitted, the 

system processes the input and classifies the transaction. 

A "Genuine" output means the transaction is low risk, 

while a "Fraudulent" output suggests suspicious activity. 

These labels are shown with color-coded visuals for easy 

understanding. 

 
 Fig. 4.Prediction Output 

Users can explore expandable sections like “What do 

these fields mean?” to get detailed explanations of each 

feature and “Fraud Prevention Tips” for useful security 

advice, including multi-factor authentication, 
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monitoring for unusual login behavior, and setting 

transaction limits. Examples of input and output are also 

provided, showing how the model’s predictions differ 

between low-risk and high-risk situations. 

Troubleshooting instructions help users resolve common 

problems such as missing dependencies, incorrect 

Python versions, or the absence of the model.pkl file. 

With this thorough guidance, both technical and 

non-technical users can easily use, understand, and 

interpret the fraud detection system. 

9. CONCLUSIONS 

The Real-Time Fraud Detection System created in this 

project effectively shows how machine learning can be 

used to tackle one of the biggest challenges in finance 

and online shopping—spotting fraud before it causes 

harm. Using a well-organized set of transaction data, 

 
 Fig. 5.Explanation Panel 

the system uses supervised learning methods, especially 

Random Forest, to determine if a transaction is 

fraudulent or safe, and it performs very well. The project 

includes a full process from collecting and preparing 

data, creating useful features, training and testing the 

model, to putting it into use through a web app made 

with Streamlit. This highlights the strength of applying 

machine learning in real situations and also makes it easy 

for people without technical skills to use the model live. 

A big success of this system is that it keeps a good 

balance between how well it works and how easy it is to 

understand. Important factors like the amount of the 

transaction, how long the account has been open, and the 

type of device used were found to have a big impact on 

identifying fraud. By focusing on these key elements and 

adding clear visual feedback in the user interface, the 

system builds trust and makes its decisions more 

transparent. Even though there are some limitations, like 

having too many nonfraudulent transactions and not 

having live data, the current version is very flexible and 

can be expanded. Future improvements, including 

real-time data flow, tools to explain the model’s 

decisions like SHAP and LIME, an API setup, and 

cloud-based deployment, will make the system even 

better and ready for real-world use. This project offers 

more than just a technical answer—it also provides a 

guide for responsibly using AI in fraud detection. It 

shows best practices in handling data, testing models, 

integrating them with user interfaces, and being aware of 

security issues, which can help future projects in similar 

areas. In the end, this system shows how machine 

learning, when carefully designed and used responsibly, 

can greatly cut down on fraud and improve trust in 

digital financial systems. 

APPENDIX 

The appendix offers a comprehensive look at the core 

implementation and usability aspects of the fraud 

detection system. The backend model, built using a 

supervised machine learning classifier, was saved using 

Python’s pickle module, allowing for quick loading and 

real-time predictions without the need for retraining. 

The system workflow involves loading the model at 

runtime, preprocessing and encoding user inputs, 

organizing them into a Pandas DataFrame, and applying 

the model’s predict() function to generate results. 

Streamlit serves as the foundation for the user interaction 

layer, offering interactive input fields, responsive design 

elements, and visually clear prediction outputs. The 

interface features numerical fields, categorical options, 

sliders for time-related inputs, and styled results using 

custom CSS for better readability. Additional UI 

components such as feature explanations and fraud 

prevention suggestions help users grasp the system’s 

functionality and ensure transparency in its application. 

In addition, the appendix outlines key instructions for 

running and engaging with the system. The application 

requires Python 3.7 or newer and standard data science 

libraries, which can be installed via a requirements.txt 

file. The system is executed locally by running the 

command streamlit run app.py, which opens a 

browser-based interface. 
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