As per UGC guidelines an electronic bar code is provided to secure your paper

b (G
R
Check for i‘u""i

updates ™"

International Journal for Modern Trends in Science and Technology
Volume 11, Issue 10, pages 43-49.

ISSN: 2455-3778 online

Auvailable online at: http://www.ijmtst.com/voll lissuel0.html

DOL: https://doi.org/10.5281/zenodo.17272585

Graphical Neural Network-Based Target Selection
Algorithm for ATM (Anti-Target Missiles) in Elliptical
Formations

Suma Priya. A, Dr. Lakshmi Bhavani. K?

PG Scholar, ANUCET, Acharya Nagarjuna University, Guntur, AP, INDIA.
2Assistant Professor, ANUCET, Acharya Nagarjuna University, Guntur, AP, INDIA.

To Cite this Article

Suma Priya. A & Dr. Lakshmi Bhavani. K (2025). Graphical Neural Network-Based Target Selection Algorithm for
ATM (Anti-Target Missiles) in Elliptical Formations. International Journal for Modern Trends in Science and
Technology, 11(10), 43-49. https://doi.org/10.5281/zenod0.17272585

Article Info
Received: 06 September 2025; Accepted: 04 October 2025.; Published: 05 October 2025.

Copyright © The Authors ; This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

KEYWORDS ABSTRACT

Graph Neural Networks (GNN), In the terminal phase of Anti-Target Missiles (ATM), choosing and identifying targets is a
Anti-Target  Missile  (ATM), crucial task, particularly when the targets are positioned in ship formations with decoys and
Target Selection, Ship Formation, distortions. Although they work well for rigid alignments, traditional methods like Iterative
Pentagon, Hexagon, Elliptical Closest Point (ICP) and Modified ICP (MICP) have limitations when it comes to handling
Formation, MATLAB Simulation, nonlinear distortions, decoy deception, and dynamic formation changes. This study
Terminal Phase, Decoy  proposes a target selection algorithm for ATM systems based on Graph Neural Networks
Handling.. (GNN ) to address these challenges.
Ship formations, such as Pentagon and Hexagon shapes, are modelled by the suggested
method as graph structures, where ships serve as nodes and their spatial relationships form
the edges. The GNN utilises relational learning and message passing to identify the
intended target ship, removing the need for edge-based dependencies. Instead of relying on
iterative point matching, the GNN employs relational learning and message passing to
locate the target ship.
Three scenarios are analysed using MATLAB R2020a for simulation: (i) rigid formations,
(ii) distorted formations, and (iii) distorted formations with decoys. The results show that
the GNN technique maintains high success rates even under extreme distortion and decoy
interference, achieving robust matching efficiency across all scenarios. For terminal-phase
target selection in ATM applications, the proposed algorithm thus provides a reliable and
adaptable alternative to ICP/MICP techniques.

e
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INTRODUCTION

Since misidentification can result in mission failure,
precise target selection during a missile's terminal
guidance phase is essential in contemporary defence
systems. The purpose of Anti-Target Missiles (ATM) is to
differentiate the target ship from formations that contain
noise, distortions, and decoys. Conventional techniques
that rely on geometric point matching, such as Iterative
Closest Point (ICP) and Modified ICP (MICP), are
susceptible to noise and initial alignment.

Based on their capacity to represent geometric and
relational dependencies in ship formations, this study
suggests employing Graph Neural Networks (GNNs) for
target selection in ATM systems. Without using iterative
matching, GNNs are able to learn global formation
patterns by representing ships as nodes and spatial
relationships as edges. Simulations using MATLAB
R2020a for rigid, distorted, and distorted-with-decoy
scenarios show that the suggested method outperforms
traditional techniques in terms of matching efficiency

and robustness.
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Fig 1: Basic Diagram of Graphical Neural Networks

2. RELATED WORK
As naval warfare scenarios become increasingly

complex, extensive research has been conducted on
target recognition and selection in missile guidance
Robust

terminal-phase guidance because

systems. algorithms are crucial for
ship formations
frequently employ coordinated manoeuvres, distortions,
and decoy deployment to deceive incoming missiles.
The Iterative Closest Point (ICP) algorithm is one of
the most researched methods for aligning ship
formations. ICP uses an iterative process to minimise the
Euclidean distance between corresponding pairs to align
two sets of points. However, ICP has issues with
computational complexity, sensitivity to initialisation,

and poor performance when there are significant

distortions or false target insertions. A number of ICP

modifications have been introduced to increase
robustness.
2.1 Existing Method:

The need for a framework that can naturally model
and learn from graph-structured data is highlighted by
these limitations. Graph Neural Networks (GNNs) have
become a promising paradigm in this respect. By
allowing the integration of both node features (like ship
coordinates) and edge features (like relative distance and
angular separations), GNNs bring deep learning to
graphs. Because GNNs directly learn structural patterns
and relational dependencies, they are naturally resistant
to decoys and robust to distortions, in contrast to
ICP/MICP, which

alignment.

rely on iterative point-to-point

2.2. Novelty:

In this paper, we introduce a novel GNN-based target
selection algorithm for Anti-Target Missiles (ATM).
Unlike previous works that employ ICP or its
modifications, our approach eliminates the need for
iterative matching. Ship formations such as the Pentagon
in Elliptical Shape and Hexagon in Elliptical Shape are
modelled as graphs, and the GNN is trained to recognise
the intended target under rigid, distorted, and
decoy-infused conditions. This contribution represents a
paradigm shift in missile guidance research, offering a
scalable and adaptive alternative to traditional geometric

alignment methods.

3. SYSTEM ARCHITECTURE
The Fire Control Radar (FCR), Seeker, and the
GNN-based decision module are among the several
subsystems integrated into the proposed Graph Neural
Network (GNN)-based target selection algorithm for
Anti-Target Missiles (ATM). Fig. 1 (Block Diagram)
shows the entire system workflow.
e Data Acquisition for Fire Control Radar (FCR)
The FCR records the relative position of ship
formations during mid-course guidance. A
collection of coordination points that represent
potential targets within a specified surveillance area
is the output.
e Input form seekers (Terminal Phase)
The seeker improves target acquisition as the

missile moves into the terminal phase by gathering
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high-resolution ship position data. This stage
includes distortions brought on by environmental

factors and electronic countermeasures.

FCR Data — Secker Data | GNN Construction

Target Selection ATM

Guidance *

GNN Model

Fig 2: Block Diagram for System Architecture

¢ Module for Graph Construction
o A node (vi € V) represents each ship in the formation.
o Edges (ej € E) are used to represent pairwise
relationships, such as angular separations and inter-ship
distances.
o With X standing for node features (position, velocity,
and RCS if available), the formation is thus represented
as a graph G=(V, E, X).
o Target Selection Engine
Graph Neural Network - A multi-layer GNN uses
message-passing operations to process the generated
graph:

hglﬂ) =0 Z f(hi(l)'h]gl)'eij
JeN (D)
Where hi(l) Is the embedding of node I at layer 1, N(i)
denotes the neighbours of node i, and f{(.) is the learnable
message aggregation function. To determine the
intended target ship, a classification head processes the

final node embeddings.

¢ Output of Decision

o The target index is produced by the GNN and sent
back to the ATM’s guidance and control system for
interaction.

Elliptical Pentagon and Hexagon Formations
Modelling

Two geometric ship formation configurations were
modelled in MATLAB R2020a to assess the robustness of
the suggested GNN-based method:

o Elliptical Pentagon:

Five target ships are placed roughly at a regular
pentagon's vertices.
An elliptical scaling matrix transforms the entire

formation:

x' a 071X

[y’] - [0 b] [y]
Where a and b are the ellipse axes scaling parameters.
e Elliptical Hexagon
A regular hexagon with six ships at its vertices.
Distortion effects are introduced using a similar elliptical
transformation.
e Scenarios for Simulation
o Rigid Formation: The perfect, distortion-free
geometric configuration.
o Distortion: Elliptical scaling and rotation are used in
the distortion formations.
o Distortion + Decoys: To mimic electronic
countermeasures, more fictitious targets are injected into

the formation.

4. GRAPHICAL NEURAL NETWORKS FOR TARGET
SELECTION

Ship formation modelling in ATM systems is a good
fit for Graph Neural Networks (GNNSs), a class of deep
learning models that work directly on graph-structured
data. GNNs can represent non-Euclidean data, such as
ship formations, where spatial and relational
dependencies are crucial, in contrast to CNNs, which
leverage Euclidean grid structures.
In this work:
Nodes: represent ships (or detections) obtained from
FCR + Seeker fusion.
Node Features (x;):
Position: (x;, ¥;)
Range (1;) and bearing (6;)
Velocity or Doppler (r;) if available
Radra Cross Section (RCS) or confidence level.
Edges (e;;): represent pairwise spatial relations between
ships, e.g.
Euclidean distance: ||Pi - PJ||
Relative Angle: Af;;
Thus, a ship formation is represented as a graph:

G= (V,&,X,E)

Where V = set of nodes, € = set the edges, X = node
feature matrix, E = edge feature set.
Message Passing Framework
Message passing is where GNNs excel: each node
updates its state by combining data from its neighbours.
At layer ¢, the hidden state of the node 7 is updated as:
' =0 (W B + Ejeny 0O (07, 7 ey))

Where:
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hg”l): Feature vector of node i at layer 1.
N(i): neighbour of node i.
»W: edge update function
o: nonlinear activation (e.g., ReLU).
ng): trainable weight matrix.
After L layers, the final node embeddings hEL) They are
used for classification:
y, = Softmax(WohEL) + bo)

Where ¥, Is the probability that node i is the true
target?
The GNN thus outputs a target node index along with

confidence scores.

5. PROPOSED METHODOLOGY

The suggested approach uses a Graph Neural
Network (GNN)-based target selection algorithm for
Anti-Target Missiles (ATM)
ICP/MICP-based alignment. As illustrated in Fig. 2, the

pipeline consists of four main stages.

in place of iterative

¢ Data Generation:

o Create the following ship configurations: Pentagon
and Hexagon in an Ellipse

o Include variations such as rigidity, distortion, and
distortion with decoys.

e Graph Construction:

o Every ship is a node.

o Every pairwise relationship (velocity, angle, and
distance) equals an edge.

o Create a GNN adjacency matrix.

¢ GNN Training

o Node and edge features as input

o Node embeddings are updated by message passing
layers.

o Training under supervision using a labelled true target
node.

o Loss: Classification by cross-entropy

o Target classification:

o Probability outputs from a trained GNN for every
node

o Choose the most confident target.

o Enter the desired outcome into the ATM guidance

module.

| Data Generation |

Y

| Graph Construction |

| Target Classification |

Fig: Pipeline for Proposed Methodology

6. RESULTS AND DISCUSSION
The effectiveness of the GNN-based target selection
for the Pentagon formation is displayed in Table L.

S.no Case Matching Translation Rotation
Efficiency error error

1 Rigid 100 0 60

2 Distortion 98.05 0.16 60

3 Distortion with 80.90 3.87 60

Decoys
Table I: Pentagon and Ellipse Results

Observations:

e In the rigid formations, GNN learnt the formation

structure and performed flawlessly.

Aligned Pentagon and Ellipse

Pentagon (Initial FCR Data) Ellipse (Seeker Data)
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Fig 6.1(a): Rigid Formations
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o The five ships are perfectly aligned on the boundary of
an ideal ellipse without any measurement noise,
distortion, or decoys.

¢ The inter-ship distances and angles are exactly
according to the formation parameters (semi-major axis,
semi-minor axis, orientation).

¢ The GNN easily learns and identifies the true target

because the structure is consistent across all instances.

Pentagon (FCR Data) | Efficiency: 100.00%
Ellipse (Sesker Data) | Rotation Error: 0.00 rad  gyertappod Data | Translation Error: 0.00 units

—e— daia
X Tamsi Faint 40

o
X

¥ (km)
X

Fig 6.1(b) Distortion Formations
¢ In distortion, GNN maintained good efficiency.
¢ Nonlinear distortions of the elliptical Pentagon
include random noise in measurements and uneven
scaling along axes.
o Differences in the distances and angles between nodes
are caused by slight variations in position and
orientation.
e In contrast to ICP/MICP, which deteriorate because of
their dependence on exact alignment, the GNN
efficiently extracts relational patterns while maintaining

a high matching efficiency despite the distortions.

FCR Data (Distorted + 3 Inside + 7 Outside) Sesker Data (True + 3 Inside + 7 Outside) Aligned FCR (EHlciency = 78.T7%, Rotation Error = 60.00°)
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Fig 6.1(c): Distortion Formations with Decoys
e GNN demonstrated fewer false alignments and was

more resilient even when using decoys.

¢ In addition to distortions, random decoy points are
inserted near the formation, mimicking real targets to
confuse the guidance system.

¢ The GNN’s relational learning allows it to distinguish
the true structure from false ones, significantly
outperforming ICP/MICP methods that are prone to

misalignment in the presence of decoys.

The effectiveness of the GNN-based target selection for
the Pentagon formation is displayed in Table II.

S.no Case Matching Translation Rotational error
Efficiency error
1 Rigid 100 0.14 0
2 Distortio 97.91 0.15 0
n
3 Distortio 89.88 0.266 0
n with
Decoys

Table II: Hexagon and Ellipse Results

Observations:
e Similar to the Hexagon, GNN consistently

outperformed.

Seeker Data (Ellipse)

FCR Data (Hexagon)

1 05 0 05 1 15 - 05 0 0.5 1 15
Scaled Data

Fig 6.2(a) Rigid Formations

¢ Anideal ellipse is formed by six ships that are
precisely positioned, oriented, and spaced apart.
e Because of the structure's symmetry and consistency,
the GNN can identify the right target in every trial with

almost perfect accuracy.

47 International Journal for Modern Trends in Science and Technology



_FCR Data (Hexagon) Distorted Seeker Data

08 i
08 e .
04 05 ~
0z s
0 * 0 4
b *
02 . ;
. ;
04 05 . ot
06 O~ e
08 -

-1 -05 0 0.5 1 - 05 0 05 1 15
Scaled Data (Distorted Case)

Fig 6.2(b) Distortion Formations

e To simulate sensor errors and manoeuvres, the
formation undergoes distortions such as random

measurement noise and slight geometric warping.

e While ICP/MICP finds it difficult to identify precise
correspondences, the GNN uses the overall structure
rather than individual points to provide robust

classification despite distortions.
FCR Data

] Distorted Seeker Data with Decoys

E] 05 0 05 1 45 4 05 0 05 1 15
Aligned Data (with Decoys)

—6— Hexagon (FGR)
®  Seeker Points
® inside Decoys
Outside Decoys
= 1 |-~~~ Elipse Boundary
™\ #  Target Paint

-15 -1 -0.5 ] 05 1 15

Fig 6.2 (c) Distortion Formations with Decoys

The addition of decoys near the formation makes it
harder to spot the right ship.

In contrast to conventional methods, which suffer
from significant performance drops, the GNN maintains
strong matching efficiency even in this worst-case
scenario by learning higher-order relational patterns and

ignoring irrelevant noise and false targets.

Matching Efficiency for Pentagon and Hexagon Cases
100.00

100.00 98.05 97.91 W Pentagon
m Hexagon

89.88

100

80

60

40

Matching Efficiency (%)

20}

Rigid Distortion
Case

Distortion with Decoys

Fig: Comparison Graph for Pentagon and Hexagon

Formations

In three distinct scenarios—Rigid, Distortion, and
Distortion with Decoys- the bar graph contrasts the
matching efficiency of a Pentagon and a hexagon. The
algorithm operates flawlessly in the rigid formations
with 100% efficiency in both shapes. Nevertheless, the
efficiency progressively declines with the introduction of
distortions and decoys. The Pentagon's efficiency
declines more sharply, dropping to about 81% when
decoys are present. Conversely, even in difficult
circumstances, the Hexagon maintains a comparatively
higher efficiency of roughly 90%. This demonstrates how
the Hexagon alignment is more resilient, even though

both shapes are impacted by distortions and decoys.

7. CONCLUSION

In this paper, we propose a target selection algorithm
for Anti-Target Missile (ATM) systems based on Graph
Neural Networks (GNNs) that uses fused measurements
from seeker sensors and Fire Control Radar (FCR). In
contrast to conventional methods, the suggested GNN
method learns the relational and geometric structure of
the ship formations modelled as elliptical Pentagons and
Hexagons directly, avoiding explicit iterative alignment.
The following significant findings were obtained from
extensive MATLAB R2020a simulations:
e Robustness: The GNN maintained noticeably higher
efficiency in distorted and decoy-rich environments and
attained 100% matching efficiency in rigid formations.
e Generality: The GNN demonstrated its versatility to
various geometrical configurations by generalising well
across both Pentagon and Hexagon elliptical formations.
The GNN offers a

single-pass forward inference, which makes it more

e Computational Advantage:
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appropriate for real-time target selection in missile
guidance loops than conventional techniques that
depend on iterative convergence.

¢ Defence Applicability: The suggested method shows
that deep learning, more especially GNNs, can be
implemented for next-generation defence systems that

need to be resistant to geometric distortion and deceit.
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