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In the terminal phase of Anti-Target Missiles (ATM), choosing and identifying targets is a 

crucial task, particularly when the targets are positioned in ship formations with decoys and 

distortions. Although they work well for rigid alignments, traditional methods like Iterative 

Closest Point (ICP) and Modified ICP (MICP) have limitations when it comes to handling 

nonlinear distortions, decoy deception, and dynamic formation changes. This study 

proposes a target selection algorithm for ATM systems based on Graph Neural Networks 

(GNNs) to address these challenges.  

Ship formations, such as Pentagon and Hexagon shapes, are modelled by the suggested 

method as graph structures, where ships serve as nodes and their spatial relationships form 

the edges. The GNN utilises relational learning and message passing to identify the 

intended target ship, removing the need for edge-based dependencies. Instead of relying on 

iterative point matching, the GNN employs relational learning and message passing to 

locate the target ship.  

Three scenarios are analysed using MATLAB R2020a for simulation: (i) rigid formations, 

(ii) distorted formations, and (iii) distorted formations with decoys. The results show that 

the GNN technique maintains high success rates even under extreme distortion and decoy 

interference, achieving robust matching efficiency across all scenarios. For terminal-phase 

target selection in ATM applications, the proposed algorithm thus provides a reliable and 

adaptable alternative to ICP/MICP techniques. 
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INTRODUCTION 

Since misidentification can result in mission failure, 

precise target selection during a missile's terminal 

guidance phase is essential in contemporary defence 

systems. The purpose of Anti-Target Missiles (ATM) is to 

differentiate the target ship from formations that contain 

noise, distortions, and decoys. Conventional techniques 

that rely on geometric point matching, such as Iterative 

Closest Point (ICP) and Modified ICP (MICP), are 

susceptible to noise and initial alignment. 

Based on their capacity to represent geometric and 

relational dependencies in ship formations, this study 

suggests employing Graph Neural Networks (GNNs) for 

target selection in ATM systems.  Without using iterative 

matching, GNNs are able to learn global formation 

patterns by representing ships as nodes and spatial 

relationships as edges.  Simulations using MATLAB 

R2020a for rigid, distorted, and distorted-with-decoy 

scenarios show that the suggested method outperforms 

traditional techniques in terms of matching efficiency 

and robustness. 

 
Fig 1: Basic Diagram of Graphical Neural Networks 

2. RELATED WORK 

As naval warfare scenarios become increasingly 

complex, extensive research has been conducted on 

target recognition and selection in missile guidance 

systems. Robust algorithms are crucial for 

terminal-phase guidance because ship formations 

frequently employ coordinated manoeuvres, distortions, 

and decoy deployment to deceive incoming missiles. 

The Iterative Closest Point (ICP) algorithm is one of 

the most researched methods for aligning ship 

formations. ICP uses an iterative process to minimise the 

Euclidean distance between corresponding pairs to align 

two sets of points. However, ICP has issues with 

computational complexity, sensitivity to initialisation, 

and poor performance when there are significant 

distortions or false target insertions. A number of ICP 

modifications have been introduced to increase 

robustness. 

2.1 Existing Method: 

The need for a framework that can naturally model 

and learn from graph-structured data is highlighted by 

these limitations. Graph Neural Networks (GNNs) have 

become a promising paradigm in this respect. By 

allowing the integration of both node features (like ship 

coordinates) and edge features (like relative distance and 

angular separations), GNNs bring deep learning to 

graphs. Because GNNs directly learn structural patterns 

and relational dependencies, they are naturally resistant 

to decoys and robust to distortions, in contrast to 

ICP/MICP, which rely on iterative point-to-point 

alignment. 

 

2.2 Novelty: 

In this paper, we introduce a novel GNN-based target 

selection algorithm for Anti-Target Missiles (ATM). 

Unlike previous works that employ ICP or its 

modifications, our approach eliminates the need for 

iterative matching. Ship formations such as the Pentagon 

in Elliptical Shape and Hexagon in Elliptical Shape are 

modelled as graphs, and the GNN is trained to recognise 

the intended target under rigid, distorted, and 

decoy-infused conditions. This contribution represents a 

paradigm shift in missile guidance research, offering a 

scalable and adaptive alternative to traditional geometric 

alignment methods. 

 

3. SYSTEM ARCHITECTURE 

The Fire Control Radar (FCR), Seeker, and the 

GNN-based decision module are among the several 

subsystems integrated into the proposed Graph Neural 

Network (GNN)-based target selection algorithm for 

Anti-Target Missiles (ATM). Fig. 1 (Block Diagram) 

shows the entire system workflow. 

• Data Acquisition for Fire Control Radar (FCR) 

The FCR records the relative position of ship 

formations during mid-course guidance. A 

collection of coordination points that represent 

potential targets within a specified surveillance area 

is the output. 

• Input form seekers (Terminal Phase) 

The seeker improves target acquisition as the 

missile moves into the terminal phase by gathering 
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high-resolution ship position data. This stage 

includes distortions brought on by environmental 

factors and electronic countermeasures. 

 
Fig 2: Block Diagram for System Architecture 
 

• Module for Graph Construction 

o A node (vᵢ ∈ V) represents each ship in the formation. 

o Edges (eᵢⱼ ∈ E) are used to represent pairwise 

relationships, such as angular separations and inter-ship 

distances. 

o With X standing for node features (position, velocity, 

and RCS if available), the formation is thus represented 

as a graph G = (V, E, X). 

• Target Selection Engine 

Graph Neural Network - A multi-layer GNN uses 

message-passing operations to process the generated 

graph: 

ℎ𝑖
(𝑙+1)

=  𝜎 ( ∑ 𝑓

𝑗𝜖𝑁(𝑖)

(ℎ𝑖
(𝑙)

, ℎ𝑗
(𝑙)

, 𝑒𝑖𝑗) 

Where ℎ𝑖
(𝑙)

 Is the embedding of node I at layer l, N(i) 

denotes the neighbours of node i, and f(.) is the learnable 

message aggregation function. To determine the 

intended target ship, a classification head processes the 

final node embeddings. 

 

• Output of Decision 

• The target index is produced by the GNN and sent 

back to the ATM’s guidance and control system for 

interaction. 

Elliptical Pentagon and Hexagon Formations 

Modelling 

Two geometric ship formation configurations were 

modelled in MATLAB R2020a to assess the robustness of 

the suggested GNN-based method: 

• Elliptical Pentagon: 

Five target ships are placed roughly at a regular 

pentagon's vertices. 

An elliptical scaling matrix transforms the entire 

formation: 

 

[
𝑥′

𝑦′
] = [

𝑎 0
0 𝑏

] [
𝑥
𝑦] 

Where a and b are the ellipse axes scaling parameters. 

• Elliptical Hexagon 

A regular hexagon with six ships at its vertices. 

Distortion effects are introduced using a similar elliptical 

transformation. 

• Scenarios for Simulation 

o Rigid Formation: The perfect, distortion-free 

geometric configuration. 

o Distortion: Elliptical scaling and rotation are used in 

the distortion formations. 

o Distortion + Decoys: To mimic electronic 

countermeasures, more fictitious targets are injected into 

the formation. 

 

4. GRAPHICAL NEURAL NETWORKS FOR TARGET 

SELECTION 

Ship formation modelling in ATM systems is a good 

fit for Graph Neural Networks (GNNs), a class of deep 

learning models that work directly on graph-structured 

data. GNNs can represent non-Euclidean data, such as 

ship formations, where spatial and relational 

dependencies are crucial, in contrast to CNNs, which 

leverage Euclidean grid structures. 

In this work: 

Nodes: represent ships (or detections) obtained from 

FCR + Seeker fusion. 

Node Features (𝑥𝑖): 

Position: (𝑥𝑖 , 𝑦𝑖) 

Range (𝑟𝑖) and bearing (𝜃𝑖) 

Velocity or Doppler (𝑟𝑖) if available 

Radra Cross Section (RCS) or confidence level. 

Edges (𝑒𝑖𝑗): represent pairwise spatial relations between 

ships, e.g. 

Euclidean distance: ‖𝑃𝑖 −  𝑃𝑗‖ 

Relative Angle: ∆𝜃𝑖𝑗 

Thus, a ship formation is represented as a graph: 

𝐺 =  (𝑉, 𝜀, 𝑿, 𝑬) 

 Where 𝒱 = set of nodes, ε = set the edges, X = node 

feature matrix, E = edge feature set. 

Message Passing Framework 

Message passing is where GNNs excel: each node 

updates its state by combining data from its neighbours. 

At layer ℓ, the hidden state of the node i is updated as: 

𝒉𝑖
(𝑙+1)

 = 𝜎(𝑾1
(𝑙)

 𝒉𝑖
(𝑙)

+ ∑ 𝜑(𝑙)(𝒉𝑖
(𝑙)

, 𝒉𝑗
(𝑙)

, 𝒆𝑖𝑗)𝑗∈𝑁(𝑖) ) 

 Where: 
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𝒉𝑖
(𝑙+1)

: Feature vector of node i at layer l. 

N(i): neighbour of node i. 

𝜑(𝑙): edge update function 

𝜎: nonlinear activation (e.g., ReLU). 

𝑾1
(𝑙)

: trainable weight matrix. 

After L layers, the final node embeddings 𝒉𝑖
(𝐿)

 They are 

used for classification: 

𝑦𝑖̂ = Softmax(𝑾𝑜𝒉𝑖
(𝐿)

+  𝒃𝑜) 

 Where 𝑦𝑖̂  Is the probability that node i is the true 

target? 

The GNN thus outputs a target node index along with 

confidence scores. 

 

5. PROPOSED METHODOLOGY 

The suggested approach uses a Graph Neural 

Network (GNN)-based target selection algorithm for 

Anti-Target Missiles (ATM) in place of iterative 

ICP/MICP-based alignment. As illustrated in Fig. 2, the 

pipeline consists of four main stages. 

• Data Generation: 

o Create the following ship configurations: Pentagon 

and Hexagon in an Ellipse 

o Include variations such as rigidity, distortion, and 

distortion with decoys. 

• Graph Construction: 

o Every ship is a node. 

o Every pairwise relationship (velocity, angle, and 

distance) equals an edge. 

o Create a GNN adjacency matrix. 

• GNN Training 

o Node and edge features as input 

o Node embeddings are updated by message passing 

layers. 

o Training under supervision using a labelled true target 

node. 

o Loss: Classification by cross-entropy 

 

• Target classification: 

o Probability outputs from a trained GNN for every 

node 

o Choose the most confident target. 

o Enter the desired outcome into the ATM guidance 

module. 

 

 

 

 
Fig: Pipeline for Proposed Methodology 

 

6. RESULTS AND DISCUSSION 

The effectiveness of the GNN-based target selection 

for the Pentagon formation is displayed in Table I. 

S.no Case Matching 

Efficiency 

Translation 

error 

Rotation 

error 

1 Rigid 100 0 60 

2 Distortion 98.05 0.16 60 

3 Distortion with 

Decoys 

80.90 3.87 60 

 

Table I: Pentagon and Ellipse Results 

Observations: 

• In the rigid formations, GNN learnt the formation 

structure and performed flawlessly. 

 

   
 

Fig 6.1(a): Rigid Formations 
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• The five ships are perfectly aligned on the boundary of 

an ideal ellipse without any measurement noise, 

distortion, or decoys. 

• The inter-ship distances and angles are exactly 

according to the formation parameters (semi-major axis, 

semi-minor axis, orientation). 

• The GNN easily learns and identifies the true target 

because the structure is consistent across all instances. 

    
 

Fig 6.1(b) Distortion Formations  

• In distortion, GNN maintained good efficiency. 

• Nonlinear distortions of the elliptical Pentagon 

include random noise in measurements and uneven 

scaling along axes. 

• Differences in the distances and angles between nodes 

are caused by slight variations in position and 

orientation. 

• In contrast to ICP/MICP, which deteriorate because of 

their dependence on exact alignment, the GNN 

efficiently extracts relational patterns while maintaining 

a high matching efficiency despite the distortions. 

 

    
Fig 6.1(c): Distortion Formations with Decoys 

• GNN demonstrated fewer false alignments and was 

more resilient even when using decoys. 

• In addition to distortions, random decoy points are 

inserted near the formation, mimicking real targets to 

confuse the guidance system. 

• The GNN’s relational learning allows it to distinguish 

the true structure from false ones, significantly 

outperforming ICP/MICP methods that are prone to 

misalignment in the presence of decoys. 

The effectiveness of the GNN-based target selection for 

the Pentagon formation is displayed in Table II. 

S.no Case Matching 

Efficiency 

Translation 

error 

Rotational error 

1 Rigid 100 0.14 0 

2 Distortio

n 

97.91 0.15 0 

3 Distortio

n with 

Decoys 

89.88 0.266 0 

 

Table II: Hexagon and Ellipse Results 

 

Observations: 

• Similar to the Hexagon, GNN consistently 

outperformed. 

 

 

  
 

Fig 6.2(a) Rigid Formations 

 

• An ideal ellipse is formed by six ships that are 

precisely positioned, oriented, and spaced apart. 

• Because of the structure's symmetry and consistency, 

the GNN can identify the right target in every trial with 

almost perfect accuracy. 
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Fig 6.2(b) Distortion Formations 

 

• To simulate sensor errors and manoeuvres, the 

formation undergoes distortions such as random 

measurement noise and slight geometric warping. 

 

• While ICP/MICP finds it difficult to identify precise 

correspondences, the GNN uses the overall structure 

rather than individual points to provide robust 

classification despite distortions. 

   

  
Fig 6.2 (c) Distortion Formations with Decoys 

 

The addition of decoys near the formation makes it 

harder to spot the right ship. 

In contrast to conventional methods, which suffer 

from significant performance drops, the GNN maintains 

strong matching efficiency even in this worst-case 

scenario by learning higher-order relational patterns and 

ignoring irrelevant noise and false targets. 

 

 
Fig:  Comparison Graph for Pentagon and Hexagon 

Formations 

 

In three distinct scenarios—Rigid, Distortion, and 

Distortion with Decoys- the bar graph contrasts the 

matching efficiency of a Pentagon and a hexagon. The 

algorithm operates flawlessly in the rigid formations 

with 100% efficiency in both shapes. Nevertheless, the 

efficiency progressively declines with the introduction of 

distortions and decoys. The Pentagon's efficiency 

declines more sharply, dropping to about 81% when 

decoys are present. Conversely, even in difficult 

circumstances, the Hexagon maintains a comparatively 

higher efficiency of roughly 90%. This demonstrates how 

the Hexagon alignment is more resilient, even though 

both shapes are impacted by distortions and decoys. 

 

7. CONCLUSION 

In this paper, we propose a target selection algorithm 

for Anti-Target Missile (ATM) systems based on Graph 

Neural Networks (GNNs) that uses fused measurements 

from seeker sensors and Fire Control Radar (FCR). In 

contrast to conventional methods, the suggested GNN 

method learns the relational and geometric structure of 

the ship formations modelled as elliptical Pentagons and 

Hexagons directly, avoiding explicit iterative alignment. 

The following significant findings were obtained from 

extensive MATLAB R2020a simulations: 

• Robustness: The GNN maintained noticeably higher 

efficiency in distorted and decoy-rich environments and 

attained 100% matching efficiency in rigid formations. 

• Generality: The GNN demonstrated its versatility to 

various geometrical configurations by generalising well 

across both Pentagon and Hexagon elliptical formations. 

• Computational Advantage: The GNN offers a 

single-pass forward inference, which makes it more 
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appropriate for real-time target selection in missile 

guidance loops than conventional techniques that 

depend on iterative convergence. 

• Defence Applicability: The suggested method shows 

that deep learning, more especially GNNs, can be 

implemented for next-generation defence systems that 

need to be resistant to geometric distortion and deceit. 
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