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This paper presents an artificial intelligence–based control strategy for Automatic 

Generation Control (AGC) of a two-area hybrid power system comprising a photovoltaic 

(PV) source and a reheat thermal power plant. The increasing penetration of renewable 

energy sources and continuous load variations introduce significant uncertainties, making 

conventional controller-based AGC approaches less effective. To address these challenges, 

an Artificial Neural Network (ANN) controller is proposed to enhance frequency regulation 

and tie-line power control under dynamic operating conditions. The ANN controller is 

trained to capture the nonlinear behavior of the hybrid power system and to generate 

optimal control actions in response to load disturbances and renewable power fluctuations. 

The performance of the proposed ANN-based AGC scheme is evaluated under various 

scenarios, including step load changes in individual areas, simultaneous load disturbances, 

and parameter uncertainties. Simulation results demonstrate that the ANN controller 

provides superior dynamic performance compared to conventional PI and 

optimization-based controllers reported in the literature, achieving reduced frequency 

deviations, lower overshoot, faster settling time, and improved damping characteristics. The 

proposed approach confirms the effectiveness of artificial intelligence techniques in 

improving the reliability and robustness of AGC in complex hybrid PV–thermal power 

systems. 
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1. INTRODUCTION 

The rapid growth in electrical energy demand, coupled 

with the large-scale integration of renewable energy 

sources (RESs), has significantly increased the 

complexity of modern power systems. Maintaining 

system stability and reliability under such conditions is a 

major challenge for power system operators. Among the 

various stability issues, frequency regulation remains 

one of the most critical aspects, as even small deviations 

in system frequency can adversely affect power quality, 

equipment lifespan, and overall system security. 

Automatic Generation Control (AGC) plays a vital role 

in maintaining the balance between generation and load 

by regulating system frequency and tie-line power 

exchanges in interconnected power systems [1]–[3]. 

Traditionally, AGC has been implemented using 

classical control strategies such as proportional-integral 

(PI) and proportional-integral-derivative (PID) 

controllers due to their simplicity and ease of 

implementation [4], [5]. These controllers are usually 

designed based on linearized system models and fixed 

operating conditions. However, modern power systems 

are increasingly characterized by nonlinear dynamics, 

parameter uncertainties, load fluctuations, and 

intermittent renewable generation, which significantly 

degrade the performance of conventional controllers [6], 

[7]. As a result, fixed-gain PI/PID controllers often 

exhibit higher overshoot, longer settling times, and poor 

damping characteristics when subjected to sudden load 

disturbances and renewable power variations [8]. The 

integration of photovoltaic (PV) power systems into 

conventional thermal power plants has emerged as a 

promising solution to reduce greenhouse gas emissions 

and dependence on fossil fuels [9], [10]. However, PV 

systems introduce additional challenges in AGC 

operation due to their inherent intermittency, 

dependency on environmental conditions, and lack of 

inertia [11]. In hybrid PV–thermal power systems, rapid 

changes in solar irradiance can cause power imbalances, 

leading to frequent frequency deviations and tie-line 

power oscillations [12]. Therefore, advanced AGC 

strategies are required to ensure stable and reliable 

operation of such hybrid power systems. To overcome 

the limitations of classical controllers, several 

optimization-based techniques have been proposed in 

the literature for tuning AGC controller parameters. 

Metaheuristic algorithms such as Genetic Algorithm 

(GA), Particle Swarm Optimization (PSO), Firefly 

Algorithm (FA), Salp Swarm Algorithm (SSA), Black 

Widow Optimization Algorithm (BWOA), and Shuffled 

Frog Leaping Algorithm (SFLA) have been successfully 

applied to AGC problems [13]–[18]. These algorithms 

improve controller performance by minimizing objective 

functions such as Integral of Squared Error (ISE), 

Integral of Absolute Error (IAE), and Integral of 

Time-weighted Absolute Error (ITAE). Recently, novel 

optimization techniques like the RIME algorithm have 

also been explored for AGC parameter tuning, 

demonstrating improved dynamic performance under 

various operating scenarios [19], [20]. Despite their 

effectiveness, optimization-based PI/PID controllers still 

suffer from inherent drawbacks. Their performance 

heavily depends on accurate system modeling, proper 

selection of objective functions, and tuning parameters. 

Moreover, once optimized, the controller gains remain 

fixed and may not adapt effectively to sudden changes in 

system dynamics, large disturbances, or uncertainties 

introduced by renewable energy penetration [21], [22]. 

This limitation highlights the need for adaptive and 

intelligent control strategies capable of handling 

nonlinearities and uncertainties in real time. In recent 

years, Artificial Intelligence (AI)-based control 

techniques have gained significant attention in power 

system applications due to their learning capability, 

adaptability, and robustness [23]. Among these 

techniques, Artificial Neural Networks (ANNs) are 

particularly effective in modeling complex nonlinear 

systems without requiring precise mathematical models. 

ANNs can learn from system data and generate 

appropriate control actions under varying operating 

conditions, making them suitable for AGC applications 

in hybrid power systems [24]. Several studies have 

demonstrated the potential of ANN-based controllers in 

frequency control and load-frequency control problems 

[25]. However, the application of ANN controllers in 

hybrid PV and reheat thermal power systems for AGC is 

still limited and requires further investigation. 

Moreover, comparative performance analysis with 

existing optimization-based controllers under different 

load disturbances and uncertainty conditions remains an 

open research area [26]. Motivated by these 

observations, this paper proposes an Artificial 

Intelligence–based ANN controller for Automatic 

Generation Control of a two-area hybrid PV and reheat 
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thermal power system. The proposed ANN-based AGC 

scheme aims to enhance frequency regulation and 

tie-line power control by effectively handling 

nonlinearities, load variations, and renewable power 

fluctuations. The performance of the proposed controller 

is evaluated under various operating scenarios and 

compared with conventional and optimization-based 

AGC approaches reported in the literature. The results 

demonstrate the superiority of the ANN-based controller 

in terms of reduced frequency deviations, faster settling 

time, improved damping characteristics, and enhanced 

robustness, thereby validating its effectiveness for 

modern hybrid power systems. 

 

2. SYSTEM MODELING 

The power system considered for the Automatic 

Generation Control (AGC) investigation in this study is a 

two-area hybrid power system comprising a 

photovoltaic (PV) system and a reheat thermal power 

system. This hybrid configuration is designed to analyze 

the dynamic interaction between renewable and 

conventional energy sources under varying load 

conditions. In the proposed layout, Area-1 integrates the 

PV generation along with local loads, whereas Area-2 

consists of a reheat thermal power plant responsible for 

supporting system stability and frequency regulation. 

The two areas are interconnected through a tie-line, 

enabling power exchange and coordinated control. The 

schematic representation of the AGC structure for the 

considered hybrid power system is shown in Fig. 1. The 

integration of PV systems into power networks 

introduces significant operational challenges due to the 

intermittent and uncertain nature of solar energy, which 

is strongly influenced by environmental conditions such 

as irradiance and temperature. Relying solely on PV 

generation can result in frequency oscillations and 

power imbalance, particularly during sudden load 

changes or reduced solar availability. Conventional 

solutions often employ energy storage systems, such as 

batteries, to mitigate these issues. However, 

battery-based systems increase overall cost, complexity, 

and maintenance requirements. In this study, a novel 

hybrid integration strategy is adopted in which the PV 

system is directly coordinated with the reheat thermal 

power system, eliminating the need for battery storage. 

This coordinated operation enables efficient power 

sharing between the PV and thermal units, allowing the 

thermal plant to compensate for PV power fluctuations 

and maintain frequency stability. Such an approach 

effectively reduces the adverse effects of PV 

intermittency while improving the overall efficiency, 

reliability, and dynamic performance of the hybrid 

power system. The interdependent operation of both 

subsystems ensures a rapid and coordinated response to 

load variations, thereby enhancing AGC performance. 

A. Modeling of Reheat Thermal Power System 

The reheat thermal power system located in Area-2 

consists of four main components: the governor, turbine, 

reheater, and power system. For AGC analysis, a 

linearized transfer function–based modeling approach is 

adopted. Each component is represented by a first-order 

transfer function, which provides a sufficiently accurate 

dynamic approximation for load–frequency control 

studies. Similar modeling approaches have been widely 

adopted in the AGC literature [1]–[4]. 

 
FIGURE 1. Schematic diagram of power system. 

The governor transfer function is expressed as: 

 𝐺𝑔(𝑠) =
𝐾𝑔

𝑠τ𝑔+1
                                                             (1) 

where Kg is the governor gain and τg is the governor 

time constant. 

The turbine transfer function is given by: 

 𝐺𝑡(𝑠) =
𝐾𝑡

𝑠𝜏𝑡+1
                                                             (2) 

where Kt represents the turbine gain and τt denotes the 

turbine time constant. 

The reheater dynamics, which significantly influence the 

transient response of thermal power plants, are modeled 

as: 

 𝐺𝑟(𝑠) =
𝑠𝐾𝑟τ𝑟+1

𝑠τ𝑟+1
                                                          (3) 

Where Kr is the reheater gain and τr is the reheater time 

constant. 

The power system dynamics in Area-2 are represented 

by: 

 𝐺𝑝𝑠(𝑠) =
𝐾𝑝𝑠

𝑠τ𝑝𝑠+1
                                                          (4) 
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where Kps is the power system gain and τps is the 

corresponding time constant. 

The Area Control Error (ACE), which serves as the 

primary feedback signal for AGC operation, is computed 

as: 

 𝐴𝐶𝐸𝑖 = 𝐵Δ𝑓𝑖 + Δ𝑃𝑡𝑖𝑒                                                  (5) 

where B is the frequency bias coefficient, Δfi is the 

frequency deviation of the ith area, and ΔPtie represents 

the deviation in tie-line power exchange between the 

interconnected areas. 

B. Modeling of Photovoltaic System 

Accurate modeling of the PV system is essential for 

evaluating its impact on AGC performance. The PV 

system is initially modeled at the solar cell level, as 

illustrated in Fig. 2, using an equivalent electrical circuit 

consisting of a PV current source, a p–n junction diode, 

and a series resistance. The output current of the PV cell 

is dependent on solar irradiance and operating 

temperature, resulting in nonlinear and time-varying 

behavior. To ensure maximum energy extraction under 

changing environmental conditions, a Maximum Power 

Point Tracking (MPPT) mechanism is incorporated into 

the PV system. The MPPT algorithm continuously 

adjusts the operating point of the PV panel to extract 

maximum available power. Since PV systems generate 

DC power, power electronic converters and inverters are 

used to convert DC output into AC power suitable for 

grid integration. Considering the combined dynamics of 

the PV array, MPPT controller, power electronic 

converters, and output filters, the overall PV system can 

be represented by the following transfer function: 

𝐺𝑃𝑉(𝑠) =
−18𝑠+900

𝑠2+100𝑠+50
                                                    (6) 

This transfer function effectively captures the dynamic 

response of the PV system within the AGC framework. 

C. System Parameters 

Based on the developed transfer function models, Fig. 3 

illustrates the complete dynamic representation of the 

two-area hybrid PV–reheat thermal power system. The 

system parameters used in this study are selected from 

standard AGC literature to ensure realistic and reliable 

simulation results. The adopted parameter values are as 

follows: 

 

AI

AI

 
Fig 2. Overall two-area hybrid system 

 

 

These parameters provide a solid foundation for 

evaluating the performance of the proposed ANN-based 

AGC controller under various operating conditions. 

 

3. ANN CONTROLLER DESIGN 

To address the nonlinear behavior and uncertainties 

introduced by renewable energy integration and load 

disturbances in hybrid power systems, an Artificial 

Neural Network (ANN)-based controller is proposed for 
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the Automatic Generation Control (AGC) of the two-area 

PV–reheat thermal power system. Unlike conventional 

fixed-gain controllers, the ANN controller adapts to 

changing system dynamics by learning the nonlinear 

mapping between system states and control actions. 

Fig.3 A graphical representation of a three-layer MLP 

neural network with n neurons. 

A. ANN Input–Output Representation 

The ANN controller generates the control signal applied 

to the governor of the thermal power plant. The 

controller input vector for the ith area is defined as: 

 𝑥𝑖(𝑡) = [

𝛥𝑓𝑖(𝑡)
𝑑

𝑑𝑡
𝛥𝑓𝑖(𝑡)

𝐴𝐶𝐸𝑖(𝑡)

]                                                       (7) 

Where 

 𝛥𝑓𝑖(𝑡) is the frequency deviation of the 𝑖𝑡ℎ area. 

 
𝑑

𝑑𝑡
𝛥𝑓𝑖(𝑡) is the rate of change of frequency deviation, and 

 𝐴𝐶𝐸𝑖(𝑡) is the Area control Error defined in (8). 

The ANN output is the control signal: 

 𝑢𝑖(𝑡) = 𝑓𝐴𝑁𝑁(𝑥𝑖(𝑡))                                               (8) 

Which is applied to the governor to regulate power 

generation. 

B. ANN Architecture and Neuron Model 

A feedforward multilayer perceptron (MLP) structure is 

adopted, consisting of one hidden layer with Nh 

neurons and one output neuron. The net input to the jth 

hidden neuron is given by: 

 𝑣𝑗(𝑡) = ∑ 𝑤𝑗𝑘
(1)𝑛

𝑘=1 𝑥𝑘(𝑡) + 𝑏𝑗
(1)                             (9) 

Where 

 𝑤𝑗𝑘
(1) represents the weight between 𝑘𝑡ℎ input neuro and 

the 𝑗𝑡ℎ hidden neuron, 

 𝑏𝑗
(1) is the bias of the hidden neuron, and 

𝑛 is the number of the input.  

 

The output of the 𝑗𝑡ℎ hidden neuron is computed using 

the tangent sigmoid activation function: 

 ℎ𝑗(𝑡) = tanh (𝑣𝑗(𝑡)) =
𝑒
𝑣𝑗(𝑡)−𝑒

−𝑣𝑗(𝑡)

𝑒
𝑣𝑗(𝑡)+𝑒

−𝑣𝑗(𝑡)
                    (10) 

The net input to the output neuron is expressed as: 

 𝑣𝑜(𝑡) = ∑ 𝑤𝑗
(2)𝑁ℎ

𝑗=1 ℎ𝑗(𝑡) + 𝑏(2)                               (11) 

The ANN output control signal is generated using a 

linear activation function: 

 𝑢𝑖(𝑡) = 𝑣𝑜(𝑡)                                                              (12) 

C. Training Objective Function 

The ANN is trained using a supervised learning 

approach to minimize the tracking error between the 

ANN-generated control signal and an optimal reference 

signal. The instantaneous error is defined as: 

 𝑒(𝑡) = 𝑢𝑟𝑒𝑓(𝑡) − 𝑢𝐴𝑁𝑁(𝑡)                                   (13) 

The Mean Squared Error (MSE) objective function is 

minimized during training: 

 𝐽 =
1

𝑁
∑ 𝑒2(𝑡)𝑁
𝑡=1                                                    (14) 

where NNN is the number of training samples. 

To enhance AGC performance, the training dataset is 

generated under various operating scenarios, including 

step load perturbations and PV power variations. 

D. Weight Update Rule 

The ANN weights and biases are updated using the 

Levenberg–Marquardt (LM) backpropagation algorithm, 

which combines the advantages of gradient descent and 

the Gauss–Newton method. The weight update rule is 

given by: 

 𝑤(𝑘 + 1) = 𝑤(𝑘) − [𝐽T𝐽 + μ𝐼]−1𝐽T𝑒                     (15) 

Where 

J is the Jacobian matrix of partial derivatives of the 

network errors with respect to the weights, 

μ is the damping factor, and 

I is the identity matrix. 

E. ANN-Based AGC Control Law 

The overall AGC control law using the ANN controller 

can be expressed as: 

 𝑢𝑖(𝑡) = 𝑓𝐴𝑁𝑁 (Δ𝑓𝑖(𝑡),
𝑑

𝑑𝑡
Δ𝑓𝑖(𝑡), 𝐵Δ𝑓𝑖(𝑡) + Δ𝑃𝑡𝑖𝑒(𝑡)) (16) 

This adaptive control law enables the ANN to 

continuously adjust the control signal based on real-time 

system conditions. 

F. Stability and Performance Considerations 

The ANN controller indirectly ensures system stability 

by minimizing frequency deviation and tie-line power 

error. The dynamic performance is evaluated using the 

Integral of Time-weighted Absolute Error (ITAE) 

criterion: 

𝐼𝑇𝐴𝐸 = ∫ 𝑡(|Δ𝑓1(𝑡)| + |Δ𝑓2(𝑡)| + |Δ𝑃𝑡𝑖𝑒(𝑡)|)𝑑𝑡
𝑇

0
        (17) 
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Minimization of this index leads to faster damping and 

reduced steady-state error. 

 
Fig.4 Implementation of ANN controller based two-area 

hybrid system 

 

4. SIMULATION RESULTS AND DISCUSSION 

The effectiveness of the proposed Artificial Neural 

Network (ANN)-based controller for Automatic 

Generation Control (AGC) is validated through 

extensive MATLAB/Simulink simulations on a two-area 

hybrid PV and reheat thermal power system. To clearly 

demonstrate the improvement achieved through 

intelligent control, the system performance is first 

evaluated using a conventional PI controller with fixed 

parameters. Subsequently, the PI controller is replaced 

with the proposed ANN controller, and the dynamic 

responses are compared under identical operating 

conditions. 

A. Test System and Simulation Conditions 

The simulated power system consists of two 

interconnected areas linked by a tie-line. Area-1 includes 

a photovoltaic (PV) generation unit along with local 

loads, while Area-2 consists of a reheat thermal power 

plant. The nominal system frequency is maintained at 50 

Hz. The Area Control Error (ACE) of each area is used as 

the feedback signal for AGC operation. To evaluate 

system performance, a step load disturbance of 0.01 p.u. 

is applied in Area-1, while Area-2 operates under 

nominal load conditions. This disturbance scenario 

enables the assessment of frequency deviations in both 

areas as well as tie-line power exchange dynamics. All 

simulations are conducted for the same system 

parameters to ensure a fair comparison between the PI 

and ANN controllers. 

B. Performance of Conventional PI Controller 

Initially, the AGC system is tested using a conventional 

PI controller with manually tuned gain values. The 

frequency deviation responses of Area-1 (Δf₁) and Area-2 

(Δf₂) indicate that the PI controller is capable of restoring 

the system frequency to its nominal value; however, the 

dynamic performance is unsatisfactory. Following the 

load disturbance, the frequency responses exhibit large 

initial deviations, accompanied by pronounced 

oscillations and a long settling time as shown in Fig.5. 

The lack of adaptability in the fixed-gain PI controller 

results in poor damping of oscillations, particularly due 

to the intermittent nature of the PV source in Area-1. 

Moreover, the tie-line power deviation (ΔPₜᵢₑ) shows 

sustained oscillations before reaching steady state, which 

may adversely affect inter-area power exchange stability. 

 

 
Fig.5 simulation results of PI controlled power system of 

two-area 

The ACE responses in both areas converge slowly to 

zero, indicating delayed correction of generation–load 

imbalance. These results clearly demonstrate that the 

conventional PI controller struggles to handle nonlinear 

dynamics and renewable energy uncertainties 

effectively. 

C. Performance of Proposed ANN Controller 

To overcome the limitations of fixed-parameter control, 

the conventional PI controller is replaced with the 

proposed ANN-based AGC controller. The ANN 

controller dynamically generates the control signal based 

on real-time measurements of frequency deviation, rate 

of change of frequency, and ACE. The simulation results 

show a significant improvement in dynamic 

performance with the ANN controller as shown in Fig.6. 

The maximum frequency deviation in both areas is 

substantially reduced compared to the PI controller. 

Oscillations are effectively suppressed, and the system 

reaches steady-state conditions much faster. The ANN 
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controller demonstrates superior learning capability, 

enabling it to adapt to sudden load changes and PV 

power fluctuations. 

 

 
Fig.6 simulation results of ANN controlled power 

system of two-area 

Furthermore, the tie-line power deviation under ANN 

control settles rapidly with minimal oscillations, 

indicating improved coordination between the two 

areas. The ACE signals converge quickly to zero, 

confirming faster restoration of power balance and 

enhanced AGC effectiveness. 

D. Comparative and Performance Analysis 

A quantitative comparison between the PI and ANN 

controllers is carried out using standard AGC 

performance indices such as peak overshoot, settling 

time, and Integral of Time-weighted Absolute Error 

(ITAE). The ANN controller consistently achieves lower 

ITAE values, reduced overshoot, and shorter settling 

times compared to the conventional PI controller as 

shown in Fig.7. Repeated simulation runs under varying 

load conditions further validate the robustness and 

consistency of the ANN-based AGC scheme. Unlike the 

PI controller, whose performance degrades under 

changing operating conditions, the ANN controller 

maintains stable and reliable operation due to its 

adaptive learning nature. 

 

 

 
Fig. 7 Comparison of simulation results for PI and ANN 

controlled two-area hybrid power system 

From the simulation results, it is evident that the 

conventional PI controller fails to deliver optimal AGC 

performance due to its fixed gain structure, resulting in 

higher frequency oscillations and delayed settling of 

both frequency and tie-line power responses. In contrast, 

the proposed ANN controller significantly enhances 

AGC performance, offering superior damping 

characteristics, faster frequency recovery, and improved 

inter-area power regulation as shown in Fig.7. These 

results clearly demonstrate that the ANN-based 

intelligent control strategy provides a robust and 

efficient solution for AGC in hybrid PV–thermal 

interconnected power systems subjected to load 

disturbances and renewable energy uncertainties. 

 

5. CONCLUSION 

This paper investigated the Automatic Generation 

Control (AGC) of a two-area hybrid photovoltaic (PV) 

and reheat thermal power system using an Artificial 

Neural Network (ANN)-based controller. The 

integration of renewable energy sources and varying 

load demands introduce nonlinearities and uncertainties 

that limit the effectiveness of conventional fixed-gain 

controllers. To address these challenges, an intelligent 

ANN controller was designed to improve frequency 

regulation and tie-line power control. The performance 

of the proposed ANN-based AGC scheme was evaluated 

through MATLAB/Simulink simulations and compared 
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with a conventional PI controller under identical 

operating conditions. The simulation results 

demonstrated that the PI controller exhibits larger 

frequency deviations, higher oscillations, and longer 

settling times following load disturbances. In contrast, 

the ANN controller significantly reduced frequency 

overshoot, improved damping characteristics, and 

achieved faster restoration of system frequency and 

tie-line power balance. Overall, the proposed 

ANN-based controller proved to be a robust and 

adaptive solution for AGC in hybrid PV–thermal power 

systems. Its ability to handle nonlinear dynamics and 

renewable energy uncertainties makes it a promising 

control strategy for modern interconnected power 

systems with high renewable penetration. 
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