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This paper presents the design and performance evaluation of an Artificial Neural Network 

(ANN)–based controller for Optimal Automatic Generation Control (AGC) in multi-area 

interconnected power systems. Unlike conventional optimal control approaches that rely on 

precise mathematical models and fixed weighting matrices, the proposed ANN controller 

learns the nonlinear dynamics of the power system and adapts its control action in real time. 

The ANN is trained using system state variables such as area control error (ACE), 

frequency deviations, tie-line power deviations, and their integral components, enabling 

effective minimization of frequency and tie-line power oscillations under varying operating 

conditions. The proposed method is implemented on discrete two-area and multi-area 

interconnected power systems comprising conventional thermal units and renewable 

energy sources such as wind turbines. The performance of the ANN-based AGC is 

investigated under 1% and 5% step load perturbations (SLPs) and parameter uncertainties. 

Simulation results demonstrate that the proposed ANN controller significantly improves 

dynamic response, settling time, overshoot reduction, steady-state accuracy, and robustness 

when compared with existing centralized optimal quadratic AGC and other controllers 

reported in the literature. The obtained results confirm that the ANN-based AGC is an 

effective and flexible solution for modern large-scale interconnected power systems with 

increased penetration of renewable energy sources. 
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1. INTRODUCTION 

The reliable operation of interconnected power systems 

critically depends on the continuous balance between 

generated power and load demand. Any sudden 

mismatch caused by load variations, generator outages, 

or renewable energy intermittency leads to deviations in 

system frequency and unscheduled tie-line power 

exchanges between interconnected areas. If not properly 

controlled, these deviations may degrade power quality, 

reduce system reliability, and, in severe cases, result in 

system instability or blackouts. Therefore, Automatic 

Generation Control (AGC), also known as Load 

Frequency Control (LFC), is an essential secondary 

control mechanism used to restore system frequency to 

its nominal value and maintain scheduled tie-line power 

flows following disturbances [1]–[3]. In traditional 

power systems dominated by conventional thermal and 

hydro generation, AGC design is commonly based on 

linearized system models and classical control 

techniques such as integral (I), proportional–integral 

(PI), and proportional–integral–derivative (PID) 

controllers [4]–[6]. Although these controllers are simple 

to implement, their fixed-gain structure limits 

performance under large load disturbances, parameter 

uncertainties, and nonlinear system dynamics. 

Moreover, tuning such controllers for multi-area 

interconnected systems becomes increasingly complex as 

system size and interconnections grow [7]. To overcome 

these limitations, optimal control approaches based on 

Linear Quadratic Regulator (LQR) theory have been 

widely investigated for AGC applications [8]–[10]. 

Centralized Optimal Quadratic AGC (COQAGC) 

methods formulate the AGC problem as a cost functional 

minimization task, where frequency deviations, tie-line 

power deviations, Area Control Error (ACE), and control 

effort are minimized simultaneously. The Functional 

Minimization Method (FMM) has been introduced to 

simplify the selection of state and control weighting 

matrices, providing a systematic and optimal framework 

for controller design [11]–[13]. While LQR/FMM-based 

AGC schemes offer improved transient performance and 

guaranteed optimality, they strongly rely on accurate 

mathematical modeling and fixed system parameters, 

which limits their robustness in practical power system 

environments. Modern power systems are undergoing a 

significant transformation due to the large-scale 

integration of renewable energy sources (RESs) such as 

wind and solar power. These sources are inherently 

intermittent, nonlinear, and stochastic in nature, 

introducing additional uncertainties into the AGC 

problem [14]–[16]. Furthermore, communication delays, 

load uncertainties, parameter variations, and nonlinear 

turbine–governor dynamics further challenge the 

effectiveness of conventional AGC strategies [17], [18]. 

Under such conditions, fixed-parameter optimal 

controllers may fail to provide satisfactory performance, 

motivating the need for adaptive and intelligent control 

techniques. In recent years, Artificial Intelligence 

(AI)–based methods have gained considerable attention 

for AGC design due to their ability to handle 

nonlinearities, uncertainties, and complex system 

dynamics without requiring precise mathematical 

models [19], [20]. Among these techniques, Artificial 

Neural Networks (ANNs) have emerged as a promising 

solution owing to their strong learning capability, 

generalization ability, and adaptability [21]. ANN-based 

controllers can learn the nonlinear mapping between 

system states and control actions directly from data, 

making them suitable for complex multi-area power 

systems with renewable energy penetration [22], [23]. 

Several studies have explored ANN-based AGC and 

LFC schemes for single-area and multi-area power 

systems [24]–[26]. These studies have demonstrated that 

ANN controllers can outperform conventional PI/PID 

and optimal controllers in terms of transient response, 

robustness, and steady-state accuracy. However, many 

existing ANN-based approaches are limited to 

continuous-time models, single-source systems, or 

simplified system structures. Moreover, comprehensive 

investigations considering discrete-time multi-area 

interconnected systems with renewable energy 

integration and comparative evaluation against 

centralized optimal quadratic AGC are still limited in the 

literature [27]–[29]. Motivated by the above research 

gaps, this paper proposes an ANN-based Optimal AGC 

framework for discrete multi-area interconnected power 

systems. The ANN controller is trained using key system 

variables such as frequency deviations, tie-line power 

deviations, ACE, and integral of ACE, enabling adaptive 

control action under varying operating conditions. The 

proposed approach eliminates the dependence on 

accurate system modeling and fixed weighting matrices, 

thereby enhancing robustness against step load 

perturbations, parameter variations, and renewable 
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power fluctuations. The effectiveness of the proposed 

method is validated on discrete two-area and multi-area 

power systems incorporating conventional thermal units 

and wind energy sources. Simulation results 

demonstrate superior performance of the proposed 

ANN-based AGC compared to centralized optimal 

quadratic AGC and other controllers reported in the 

literature [30]. 

 

2. Proposed Discrete Centralized Model of AGC 

In this study, a discrete centralized optimal Automatic 

Generation Control (AGC) scheme is developed for a 

two-area interconnected power system. Each control 

area consists of identical non-reheat thermal turbines 

interconnected through a tie-line. The proposed 

centralized closed-loop AGC structure for the two-area 

power system is illustrated in Fig. 1. To achieve zero 

steady-state error in frequency and tie-line power 

deviations, the integrals of Area Control Errors (ACEs) 

are incorporated into the system model. These Integral 

Area Control Errors (IACEs) act as supplementary local 

controllers and enhance steady-state performance. 

A. Dynamics of Two-Area Interconnected Power 

System 

The dynamics of the interconnected power system can be 

represented by the continuous-time state-space model as 

follows [27], [28]: 

 ẋ(t) = Ax(t) + Bu(t) + Ew(t)                                                                                        

(1) 

 𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)                                                                                                       

(2) 

Whare 𝑥(𝑡) ∈ Rn×1 is the state vector, 𝑢(𝑡) ∈ R2×1 is the 

control input vector, and 𝑤(𝑡) ∈ R2×1  represents load 

disturbance. The matrices A, B, C, and D are of 

appropriate dimension 

 

Based on the block diagram shown in Fig. 1, the 

first-order differential equations describing the system 

dynamics are given as follows [28], [29]: 

 

 

 

 
FIGURE 1. Transfer function model of multi-source power system  

 

 

 

 

 

  𝑥̇1 = 2π𝑇12𝑥2 − 2π𝑇12𝑥5    (3) 
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 𝑥̇2 = −
𝑘𝑝𝑠1

𝑇𝑝𝑠1
𝑥1 −

1

𝑇𝑝𝑠1
𝑥2 +

𝑘𝑝𝑠1

𝑇𝑝𝑠1
𝑥3 −

𝑘𝑝𝑠1

𝑇𝑝𝑠1
Δ𝑃𝐷1        (4) 

 𝑥̇3 = −
1

𝑇𝑇1
𝑥3 +

1

𝑇𝑇1
𝑥4            (5) 

  𝑥̇4 = −
1

𝑇𝐺1𝑅1
𝑥2 −

1

𝑇𝐺1
𝑥4 +

1

𝑇𝐺1
𝑢1           (6) 

 𝑥̇5 = −
𝑎12𝑘𝑝𝑠2

𝑇𝑝𝑠2
𝑥1 −

1

𝑇𝑝𝑠2
𝑥5 +

𝑘𝑝𝑠2

𝑇𝑝𝑠2
𝑥6 −

𝑘𝑝𝑠2

𝑇𝑝𝑠2
Δ𝑃𝐷2    (7) 

  𝑥̇6 = −
1

𝑇𝑇2
𝑥6 +

1

𝑇𝑇2
𝑥7              (8) 

 𝑥̇7 = −
1

𝑇𝐺2𝑅2
𝑥5 −

1

𝑇𝐺2
𝑥7 +

1

𝑇𝐺2
𝑢2    (9) 

 𝑥̇8 = 𝑥1 + β1𝑥2                       (10) 

 𝑥̇9 = −𝑥1 + 𝛽2𝑥5         (11) 

Where the state variables are defined as: 

• 𝑥̇1 : Tie-line power deviation between Areas 1 

and 2 

• 𝑥̇2, 𝑥̇5: Frequency deviation in Areas 1 and 2 

• 𝑥̇3, 𝑥̇6: Turbine power output deviations 

• 𝑥̇4, 𝑥̇7: Governor valve position deviations 

• 𝑥̇8, 𝑥̇9: Integral of ACEs for Areas 1 and 2 

The derivation of the state-space model is discussed in 

detail in [28], [30]. Accordingly, the state, control, 

disturbance, and output vectors are defined as 

 𝑥𝑇 = [Δ𝑃𝑡𝑖𝑒12 Δ𝑓1 Δ𝑃𝑇1 Δ𝑃𝐺1 Δ𝑓2 Δ𝑃𝑇2 Δ𝑃𝐺2]                                  

(12) 

 𝑢𝑇 = [𝑢1 𝑢2]   (13) 

 𝑝𝑇 = [Δ𝑃𝐷1 Δ𝑃𝐷2]   14) 

 𝑦𝑇 = [Δ𝑃𝑡𝑖𝑒12 Δ𝑓1 Δ𝑓2]                 (15) 

The linearized tie-line power deviation between Areas 1 

and 2 is expressed as 

 

 Δ𝑃𝑡𝑖𝑒12(𝑠) =
2π𝑇12

𝑠
(Δ𝑓1 − Δ𝑓2)                (16) 

B. Design of Discrete Centralized COQAGC 

The discrete-time state-space representation of the 

interconnected power system is obtained from the 

continuous-time model using Euler’s discretization 

method and is given by 

 𝑥(𝑘 + 1) = 𝐴𝑘𝑥(𝑘) + 𝐵𝑘𝑢(𝑘) + 𝐸𝑘𝑤(𝑘)                                                           

(17) 

 𝑥(𝑘0) = 𝑥0,  𝑥(𝑘𝑓) = 𝑥𝑘𝑓
                           (18) 

where x(k) is the discrete-time state vector, u(k) is the 

control input vector, and w(k) represents load 

disturbances. The objective of the centralized optimal 

AGC problem is to determine a control law that 

minimizes the quadratic cost function 

 𝐽 =
1

2
∑ [𝑥𝑇(𝑘)𝑄𝑘𝑥(𝑘) + 𝑢𝑇(𝑘)𝑅𝑘𝑢(𝑘)]∞

𝑘=𝑘0
      (19) 

subject to the discrete-time system dynamics given in 

(14), where Qk and Rk are the state and control 

weighting matrices, respectively. 

The optimal feedback gain matrix is obtained by solving 

the steady-state discrete algebraic Riccati equation [30], 

[31]: 

 𝐿 = [𝑅𝑘 + 𝐵𝑘
𝑇𝑃𝑘𝐵𝑘]−1𝐵𝑘

𝑇𝑃𝑘𝐴𝑘              (20) 

Where 𝑃𝑘 satisfies 

 𝑃𝑘 = 𝑄𝑘 + 𝐴𝑘
𝑇[𝑃𝑘 − 𝑃𝑘𝐵𝑘(𝐵𝑘

𝑇𝑃𝑘𝐵𝑘 + 𝑅𝑘)−1𝐵𝑘
𝑇𝑃𝑘]𝐴𝑘           

(21) 

Substituting the optimal control law into the system 

model, the closed-loop discrete system is given by 

 𝑥(𝑘 + 1) = [𝐴𝑘 − 𝐵𝑘(𝑅𝑘 + 𝐵𝑘
𝑇𝑃𝑘𝐵𝑘)−1𝐵𝑘

𝑇𝑃𝑘𝐴𝑘]𝑥(𝑘)                                    

(22) 

The closed-loop system is stable if all eigenvalues of the 

closed-loop matrix lie inside the unit circle in the 

complex plane. 

C. COQAGC Algorithm 

The detailed procedure for implementing the proposed 

COQAGC scheme is summarized as follows: 

1. Develop the continuous-time state-space model 

of the multi-area power system. 

2. Input system parameters and operating data. 

3. Augment the model by including integral of 

ACEs. 

4. Convert the augmented model into discrete 

form using Euler discretization. 

5. Initialize the Riccati matrix, select weighting 

matrices, and iteration length. 

6. Compute the discrete optimal feedback gain 

matrix and control law. 

7. Initialize state variables and simulate the 

closed-loop system iteratively. 

8. Implement the COQAGC scheme in 

MATLAB/Simulink. 

9. Evaluate dynamic responses under step load 

perturbations (SLPs). 

10. Perform robustness analysis considering 

parameter uncertainties and generation rate 

constraints (GRC). 
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3. Problem Formulation 

In a multi-area interconnected power system, variations 

in load demand cause imbalances between generation 

and consumption, leading to deviations in system 

frequency and unscheduled tie-line power flows. 

Maintaining frequency at its nominal value and 

regulating tie-line power exchange between control 

areas are the primary objectives of Automatic 

Generation Control (AGC). These objectives become 

more challenging in modern power systems due to 

nonlinear turbine–governor dynamics, parameter 

uncertainties, and the increasing integration of 

renewable energy sources. Consider a discrete-time 

multi-area interconnected power system consisting of 

conventional thermal units and renewable generation. 

For each control area, the Area Control Error (ACE) is 

defined as a combination of local frequency deviation 

and tie-line power deviation. The AGC problem aims to 

minimize ACE and its integral so that both frequency 

and tie-line power deviations are driven to zero under 

steady-state conditions following load disturbances. 

Conventional centralized AGC techniques, such as 

LQR/FMM-based controllers, rely on accurate system 

models and fixed controller parameters. However, their 

performance degrades under varying operating 

conditions and system uncertainties. To address these 

limitations, the AGC problem in this work is formulated 

as an adaptive control problem using an Artificial 

Neural Network (ANN). The proposed ANN-based 

AGC controller generates control signals based on 

measured system variables, including frequency 

deviations, tie-line power deviations, ACE, and integral 

of ACE. By learning the nonlinear relationship between 

system states and control actions, the ANN dynamically 

adjusts the control input to minimize frequency and 

tie-line power oscillations. The formulated problem 

seeks to ensure improved dynamic response, reduced 

settling time, and enhanced robustness of the 

interconnected power system under step load 

perturbations and parameter variations. 

A. Design of ANN-Based AGC Controller 

The Artificial Neural Network (ANN)–based controller 

is designed to provide adaptive control for multi-area 

interconnected power systems. Unlike conventional 

fixed-gain AGC controllers, the ANN can learn the 

nonlinear mapping between system states and optimal 

control actions, handling nonlinearities, parameter 

uncertainties, and renewable integration as shown in 

Fig.2. 

 
Fig.2 Implementation of ANN controller based two-area 

hybrid system 

B. Selection of Inputs and Outputs 

Let the input vector to the ANN at time step k be 

 𝑥(𝑘) =

[Δ𝑓1(𝑘) Δ𝑓2(𝑘) Δ𝑃𝑡𝑖𝑒12(𝑘) 𝐴𝐶𝐸1(𝑘) 𝐴𝐶𝐸2(𝑘)  ∫ 𝐴𝐶𝐸1(𝑘)  𝑑𝑡 ∫ 𝐴𝐶𝐸2(𝑘)  𝑑𝑡]𝑇     

    (23) 

Where: 

• Δ𝑓1(𝑘), Δ𝑓2(𝑘) 𝑎𝑟𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝐴𝑟𝑒𝑎𝑠 1𝑎𝑛𝑑 2, 

• Δ𝑃𝑡𝑖𝑒12(𝑘)𝑖𝑠 𝑡ℎ𝑒 𝑡𝑖𝑒 − 𝑙𝑖𝑛𝑒 𝑝𝑜𝑤𝑒𝑟 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, 

• 𝐴𝐶𝐸1(𝑘), 𝐴𝐶𝐸2(𝑘) 𝑎𝑟𝑒 𝐴𝑟𝑒𝑎 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝐸𝑟𝑟𝑜𝑟𝑠, 

• ∫ 𝐴𝐶𝐸1(𝑘)  𝑑𝑡, ∫ 𝐴𝐶𝐸2(𝑘)  𝑑𝑡𝑎𝑟𝑒𝑡ℎ𝑒𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙𝑜𝑓𝐴𝐶𝐸𝑠

. 

The output vector is: 

 𝑢(𝑘) = [
𝑢1(𝑘)

𝑢2(𝑘)
]               (24) 

C. ANN Architecture 

A feedforward Multilayer Perceptron (MLP) network is 

adopted, with one hidden layer containing nhn_hnh 

neurons. The output is generated as: 

 𝑢(𝑘) = 𝑊(2) ϕ! (𝑊(1)𝑥(𝑘) + 𝑏(1)) + 𝑏(2)          (25) 

Where: 

• 𝑾(𝟏) ∈ 𝑅2×𝑛𝑖  is the weight matrix connecting 

inputs to hidden layer (𝑛𝑖= 7 inputs), 

• 𝒃(𝟏) ∈ 𝑅𝑛ℎ is the bias vector for hidden layer, 

• 𝜙(⋅)  is the activation function of hidden 

neurons, typically tangent sigmoid: 

 [ϕ(𝑧) =
2

1+𝑒−2𝑧 − 1]                   (26) 

• 𝑾(𝟐) ∈ 𝑅2×𝑛ℎ  is the weight matrix connecting 

hidden layer to output layer: 

• 𝒃(𝟐) ∈ 𝑅2 is the bias vector for output layer. 

The network maps nonlinear relationships between 

system states and optimal control signals. 
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D. Training of the ANN 

The ANN is trained using supervised learning with a 

reference dataset (x(k),uref(k)) obtained from a 

conventional AGC controller (e.g., COQAGC or 

optimized PID). The objective is to minimize the Mean 

Squared Error (MSE) between ANN outputs and 

reference control signals: 

 𝐸 =
1

𝑁
∑ ||𝑢ref(𝑘) − 𝑢(𝑘)||2𝑁

𝑘=1                          (27) 

The backpropagation algorithm is applied to update 

weights and biases iteratively: 

 𝑊(𝑙)(𝑡 + 1) = 𝑊(𝑙)(𝑡) − η
∂𝐸

∂𝑊(𝑙)                              (28) 

 𝒃(𝒍)(𝑡 + 1) = 𝒃(𝒍)(𝑡) − 𝜂
𝜕𝐸

𝜕𝒃(𝒍)      (29) 

Where 𝑙 =1, 2 denotes the layer index and 𝜂  is the 

learning rate. 

The error gradient for output neurons is computed rate:  

 δ(2) = (𝑢(𝑘) − 𝑢ref(𝑘)) ⊙ 𝑓′! (net(2))      (30) 

And for hidden neurons: 

 δ(1) = (𝑊(2)𝑇δ(2)) ⊙ ϕ′! (net(1))                                                                        

(31) 

Where ⊙  denotes element-wise multiplication, and 

net(𝟏) , net(𝟐)  are the net input to hidden and output 

layers. 

D. Online Implementation 

After training, the ANN controller is implemented in 

real-time AGC. At each sampling instant: 

1. Measure the system states 𝑥(𝑘). 

2. Compute the control signals: 

 𝑢(𝑘) = 𝑤(2)𝜙(𝑤(1)𝑥(𝑘) + 𝑏(1)) + 𝑏(2)                                          

(33) 

3. Apply 𝑢1(𝑘) and 𝑢2(𝑘) to the governors. 

4. Repeat for each time step. 

This approach allows the controller to adaptively 

regulate frequency and tie-line power deviations under 

varying operating conditions. 

 

4. Extension to Multi-Area Multi-Source Power System 

To demonstrate the effectiveness and scalability of the 

proposed discrete Centralized Optimal Quadratic 

Automatic Generation Control (COQAGC) controller, 

the study is extended to a multi-area multi-source 

interconnected power system with renewable energy 

sources, as shown in Fig. 3 [30]. The considered test 

system consists of two control areas with heterogeneous 

generation units. Area 1 includes a non-reheat thermal 

plant and a hydro power plant, while Area 2 comprises a 

wind power plant integrated with a non-reheat thermal 

plant. 

ANN

ANN

 
FIGURE 3. ANN Controlled Two area control 

closed-loop system controller. 

 

The linearized model of the wind power plant 

incorporates the pitch actuator dynamics, a lag 

compensator to match phase and gain characteristics, 

and a blade characteristics block, as reported in [36]. 

The parameters of the non-reheat thermal plants are 

taken from Table I. The wind turbine parameters are 

adopted from the studies by Arya and Kumar [37] and 

Sahu, Griot, and Panda [34], where 

TABLE 1. The parameters of the two-area thermal power 

system. 

 
 𝑇𝑝1 = 6, 𝑇𝑝2 = 0.004, 𝑘𝑝2 = 1.25, 𝑘𝑝3 = 1.4, 𝑇𝑔2 = 0.08, 

𝑘𝑏𝑐 = 0.8, 𝑅𝑤 = 2.4, and 𝛽𝑤 = 0.425. 

The hydro power plant parameters are adopted from 

Parmar, Majhi, and kothari, where 

 𝑇𝑤 = 1𝑠, 𝑇𝑅𝐻 = 0.3𝑠, 𝑇𝑅𝐻1 = 28.75𝑠, 𝑇𝑅 = 0.11s, 𝑘𝑟1 =

0.3, 𝑇𝑔ℎ = 0.2s, and 𝑇𝑟1 = 1s. for both case studies, the 

common parameters are selected as 

 𝑘𝑝𝑠 = 𝑘𝑝𝑠1 = 𝑘𝑝𝑠2 = 120, 

 𝛽1 = 𝛽2 =  𝛽ℎ𝑦  = 𝛽𝑤 =0.425, 

 𝑇𝑝𝑠 = 𝑇𝑝𝑠1 = 𝑇𝑝𝑠2 = 20, and 

 𝑅1 = 𝑅2 = 𝑅3 = 𝑅ℎ𝑦 = 2.4. 
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The multi-area multi-source power system shown in Fig. 

9 is modeled using 15 state variables, defined as follows: 

• 𝑥1 = 𝛥𝑓1 

• 𝑥2 = 𝛥𝑃𝐺𝑁1 

• 𝑥3 = 𝛥𝑃𝑣3 

• 𝑥4 = 𝐼𝐴𝐶𝐸1 

• 𝑥5 = 𝛥𝑃𝐺𝐻  

• 𝑥6 = 𝛥𝑋𝐻 

• 𝑥7 = 𝛥𝑃𝑅𝐻  

• 𝑥8 = 𝛥𝑃𝑡𝑖𝑒12 

• 𝑥9 = 𝛥𝑓2 

• 𝑥10 = 𝛥𝐷 

• 𝑥11 = 𝛥𝐻 

• 𝑥12 = 𝛥𝐻1 

• 𝑥13 = 𝐼𝐴𝐶𝐸2 

• 𝑥14 = 𝛥𝑃𝐺𝑁2
 

• 𝑥15 = 𝛥𝑃𝑣4 

The detailed formulation of the state vector, control 

input vector, disturbance vector, and the corresponding 

continuous-time state matrix Am, input matrix Bm, and 

disturbance matrix Em for the two-area multi-source 

power system are presented in [30]. Based on the 

Functional Minimization Method (FMM) described in 

Section III, the state and control weighting matrices Qm 

and Rm are constructed for the multi-area power system 

with renewable energy sources, following the approach 

in [30]. 

For performance comparison, the cost function proposed 

by Esmail and Krishnamurthy [30] is adopted and is 

expressed as 

 𝐽 =
1

2
∑ [𝐵1

2𝑥1
2 + 2β1𝑥1𝑥8 + 𝑥8

2 + 𝐵2
2𝑥9

2 − 2β2𝑥9𝑥8 +∞
𝑘=𝑘0

𝑥8
2 + 𝑥4

2 + 𝑥13
2 + α(𝑈𝑡ℎ1

2 + 𝑈ℎ𝑦
2 + 𝑈𝑤

2 + 𝑈𝑡ℎ2
2 )]     (34) 

where α is the vector of participation factors, and Uth1, 

Uhy, Uw, and Uth2 represent the control signals applied 

to the non-reheat thermal plant in Area 1, hydro plant, 

wind power plant, and non-reheat thermal plant in Area 

2, respectively. 

The numerical values of the optimal feedback gain 

matrix are obtained using the discrete Riccati equation 

given in (16). To evaluate the dynamic performance of 

the multi-source interconnected power system under the 

proposed COQAGC controller, the following test 

scenarios are considered: 

• Performance comparison under 1% step load 

perturbation (SLP) with and without Generation 

Rate Constraints (GRC). 

• Sensitivity analysis to assess controller robustness 

against ±30% parameter variations. 

• Performance evaluation under concurrent step load 

perturbations (CSLPs) applied at 5 s intervals. 

• Cost function performance comparison for a 1% SLP 

applied in Area 1 at t=0t = 0t=0 s, while no load 

perturbation is applied in Area 2. 

 

5. SIMULATION RESULTS AND DISCUSSION 

The effectiveness of the proposed Artificial Neural 

Network (ANN)–based controller for Automatic 

Generation Control (AGC) is validated through 

extensive MATLAB/Simulink simulations on a two-area 

hybrid power system. To clearly highlight the 

improvement achieved through intelligent control, 

system performance is first analyzed using a 

conventional PI controller with fixed gains, which 

represents the existing control approach. Subsequently, 

the PI controller is replaced with the proposed ANN 

controller, and the dynamic responses are compared 

under identical operating conditions. 

A. Test System and Simulation Conditions 

The simulated system consists of two interconnected 

control areas linked by a tie-line. Area-1 comprises a 

photovoltaic (PV) generation unit along with local loads, 

while Area-2 consists of a reheat thermal power plant. 

The nominal system frequency is maintained at 50 Hz. 

The Area Control Error (ACE) of each area is used as the 

feedback signal for AGC operation. 

To assess system dynamic performance, a step load 

perturbation (SLP) of 0.01 p.u. is applied in Area-1 at t=0t 

= 0t=0 s, while Area-2 operates under nominal load 

conditions. This disturbance scenario allows evaluation 

of frequency deviations, tie-line power exchange, and 

ACE responses in both areas. All simulations are carried 

out using the same system parameters and disturbance 

conditions to ensure a fair comparison between the PI 

and ANN controllers. 

B. Performance of Conventional PID Controller 

(Existing Method) 

Initially, the AGC system is simulated using a 

conventional PI controller with manually tuned gain 

values. The frequency deviation responses of Area-1 

(Δf1) and Area-2 (Δf2) show that the PI controller is 

capable of restoring system frequency to its nominal 
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value; however, the overall dynamic performance is 

unsatisfactory. 

Fig.4 simulation results of PID controlled power system 

of two-area 

 

Following the load disturbance, the frequency responses 

exhibit large initial deviations, pronounced oscillations, 

and a long settling time, as shown in Fig. 4. The 

fixed-gain nature of the PI controller limits its ability to 

adapt to nonlinear system dynamics and renewable 

power fluctuations, particularly due to the intermittent 

nature of PV generation in Area-1. As a result, 

oscillations persist for a longer duration before the 

system reaches steady state. Moreover, the tie-line power 

deviation (ΔPtie) under PI control shows sustained 

oscillations, indicating poor inter-area power exchange 

regulation. The ACE responses of both areas converge 

slowly to zero, demonstrating delayed correction of the 

generation–load imbalance. These results clearly indicate 

that the existing PI controller fails to provide robust 

AGC performance, especially in the presence of 

renewable energy sources and system nonlinearities. 

C. Performance of Proposed ANN-Based AGC 

Controller 

To overcome the limitations of the fixed-parameter PI 

controller, it is replaced with the proposed ANN-based 

AGC controller. The ANN generates the control signal 

dynamically based on real-time measurements of 

frequency deviation, rate of change of frequency, and 

ACE, thereby adapting to changing operating 

conditions. 

 

 

 
Fig.5 simulation results of ANN controlled power 

system of two-area 

The simulation results under ANN control, shown in 

Fig. 5, demonstrate a significant improvement in 

dynamic performance. The maximum frequency 

deviations in both areas are considerably reduced 

compared to the PI controller. Oscillations are effectively 

suppressed, and the system reaches steady-state 

conditions much faster. The ANN controller exhibits 

strong learning and generalization capabilities, enabling 

it to respond efficiently to sudden load changes and PV 

power variations. 

In addition, the tie-line power deviation settles rapidly 

with minimal oscillations, indicating improved 

coordination between the interconnected areas. The ACE 

signals converge quickly to zero, confirming faster 

restoration of power balance and enhanced AGC 

effectiveness. These results validate the superior 

adaptability and robustness of the ANN controller. 

D. Comparative Performance Analysis 

A quantitative comparison between the PI controller 

(existing method) and the ANN controller (proposed 

method) is carried out using standard AGC performance 

indices such as peak overshoot, settling time, and 

Integral of Time-weighted Absolute Error (ITAE). The 

ANN controller consistently achieves lower ITAE 

values, reduced overshoot, and shorter settling times 

compared to the PI controller, as illustrated in Fig. 6. 
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Further simulation studies conducted under varying 

load conditions confirm the robustness and consistency 

of the ANN-based AGC scheme. While the performance 

of the PI controller degrades significantly under 

changing operating conditions, the ANN controller 

maintains stable and reliable operation due to its 

adaptive learning nature. 

 

Fig. 6 Comparison of simulation results for PI and ANN 

controlled two-area hybrid power system 

 

From the simulation results, it is evident that the 

conventional PI controller does not provide optimal 

AGC performance because of its fixed-gain structure, 

resulting in higher frequency oscillations, poor damping, 

and delayed settling of both frequency and tie-line 

power responses. In contrast, the proposed ANN-based 

controller significantly enhances AGC performance, 

offering superior damping characteristics, faster 

frequency recovery, and improved inter-area power 

regulation. Overall, the ANN-based intelligent control 

strategy proves to be a robust and efficient solution for 

AGC in hybrid PV–thermal interconnected power 

systems, particularly under load disturbances and 

renewable energy uncertainties. 

 

6. CONCLUSION 

This paper investigated the application of an Artificial 

Neural Network (ANN)–based controller for Automatic 

Generation Control (AGC) in a two-area hybrid 

PV–thermal interconnected power system. The 

performance of the proposed ANN controller was 

evaluated through MATLAB/Simulink simulations and 

compared with a conventional PI controller under 

identical operating conditions. Step load perturbations 

were applied to assess the dynamic response of system 

frequency, tie-line power, and Area Control Error (ACE). 

The simulation results indicate that the conventional PI 

controller, due to its fixed gain structure, is unable to 

provide satisfactory AGC performance in the presence of 

system nonlinearities and renewable energy 

uncertainties. Large frequency deviations, higher 

oscillations, and longer settling times were observed 

following load disturbances. In addition, tie-line power 

deviations and ACE responses exhibited slow 

convergence, which can negatively affect inter-area 

power exchange and overall system stability. In contrast, 

the proposed ANN-based AGC controller demonstrated 

significantly improved dynamic performance. The ANN 

controller effectively reduced peak frequency deviations, 

suppressed oscillations, and achieved faster settling of 

frequency and tie-line power responses. The ACE signals 

converged rapidly to zero, confirming improved power 

balance restoration and enhanced coordination between 

the interconnected areas. The adaptive learning 

capability of the ANN enabled robust performance 

under varying operating conditions where the 

conventional PI controller showed degraded behavior. 

Overall, the results confirm that the ANN-based AGC 

approach provides a robust and efficient solution for 

frequency regulation in hybrid interconnected power 

systems with renewable energy sources. The proposed 

controller offers superior damping characteristics, faster 

frequency recovery, and improved inter-area power 

regulation compared to conventional PI-based AGC 

schemes, making it a promising control strategy for 

modern power systems. 
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