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In anti-ship missile systems, one of the biggest challenges is accurately identifying the real 

target in complex and noisy sea environments, where false targets(decoys) and distorted 

signals  can makes things difficult. To overcome this problem , we used an advanced 

learning technique called Deep – Q- Network 

(DQN), which is specially trained to recognize the target. These algorithm confirm accurate 

target identification even in worst situations by transforming seeker data through rigid and 

non rigid transformations. The methodology involves aligning real-time seeker data with 

reference data to enable adaptive learning. Three distinct scenarios—Rigid, Distortion, and 

Distortion with Decoys are simulated to evaluate the system’s robustness. Results showed 

that the proposed method maintains high matching efficiency and accuracy , effectively 

identifying the designated target in varying formations and difficult environments. 

 

1. INTRODUCTION 

In modern warfare, accurately selecting the right 

target from a group of ships is a major challenge for 

missile systems. The missile’s seeker must differentiate 

between real targets and decoys, even under changing 

conditions like movement, weather, and enemy 

interference. To support this, the Fire Control Radar 

(FCR) provides reference data about target positions. To 

improve decision-making, we used an advanced 

machine learning method called Deep Q-Network 

(DQN), which helps the missile to choose the right 

target. 

Deep Q-Networks (DQNs) are an important 

improvement in reinforcement learning. They combine 

deep neural networks with the Q-learning method to 

make smarter decisions. In DQNs, a neural network is 

used to estimate the Q-value, which tells us how good a 

certain action is in a given situation based on future 

rewards. 
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The main features of DQNs are: 

• Using deep neural networks to estimate 

Q-values 

• Experience replay, which stores past experiences 

and uses them during training to avoid learning 

from similar data repeatedly 

• Target networks, which help keep the learning 

process stable and reliable 

 

1.1.Problem Statement: 

In terminal-phase anti-ship missile (ASM) systems, 

identifying and engaging the correct target among 

multiple ships in a dynamic and deceptive maritime 

environment remains a major challenge. Factors such as 

sensor noise , decoy deployment overlapping 

formations, and irregular ship arrangements often lead 

to confusion and misidentification. Traditional methods 

struggle to adapt in these complex situations because 

they lack the intelligence to make real-time decisions in 

uncertain and rapidly changing scenarios. 

To handle these challenges, there is a need for a smart 

and flexible target selection system that can learn and get 

better over time. This paper solves the problem using a 

Deep Q-Network (DQN), a type of reinforcement 

learning that helps the missile make smart choices even 

in confusing situations. The DQN-based system can 

study the environment, tell the difference between real 

targets and decoys, and pick the most likely correct 

one—even when there is noise, distortion, or 

interference. By learning from past experiences, this 

method improves both accuracy and reliability during 

the missile’s final attack phase. 

 
   Fig.1: Target Identification and Detection 

 

The algorithm is tested in three key scenarios:  

ideal conditions with rigid ship formation alignment, (ii) 

dynamic and non-ideal ship configurations, and (iii) 

complex environments containing false targets or 

decoys. Each scenario is simulated to evaluate the 

matching accuracy, error rate, and success rate of correct 

target identification. The Deep Q-Network (DQN) 

algorithm is employed independently to enhance the 

decision-making process in terminal-phase anti-ship 

missile guidance.  

 
Fig:2 -  Three representative scenarios.  

 

This method enables the system to learn from its 

environment, adapt to changing conditions, and 

accurately select the most likely real target—even under 

distortion, noise, and deception. This approach offers a 

lightweight and efficient solution suitable for real-time 

application in onboard missile systems. 

1.2: Literature review: 

In this work, proposed a data alignment technique to 

align seeker and radar data to help anti-ship missiles 

accurately identify the true target. This method showed 

strong performance even when ships moved or decoys 

were present. 

In this study, a hybrid Genetic Algorithm–Back 

Propagation (GA-BP) method is used to enhance target 

recognition during the missile’s terminal phase by 

optimizing neural network training. The approach 

showed better accuracy and stability in identifying real 

targets, even in noisy or complex conditions 

In this work, a target selection method using Radar 

Cross Section (RCS) and Hausdorff distance is applied to 

match ship positions and improve identification 

accuracy. This strategy enhances the missile’s ability to 

select the correct target, even with decoys or changing 

formations. 

In this paper, deep reinforcement learning methods 

like DQN, DDPG, and BP neural networks are used to 

help missiles make smart decisions in complex 

environments. The trained system showed strong ability 

to avoid threats and adapt to changing conditions, 

improving missile autonomy and reliability. 
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In this study, a Deep Q Network (DQN) was used to 

help submarines and warships learn intelligent 

navigation and target tracking in complex naval 

environments. The method outperformed traditional 

path-planning by learning faster and navigating more 

efficiently using custom rewards and a stable training 

setup. 

In this study, a Deep Q-Network (DQN) was 

re-implemented to clarify important training details that 

were missing in the original model. The improved 

version runs faster and is easier to adapt for new 

applications beyond video games. 

 

2. DEEP Q NETWORKS (DQN) 

The Deep Q Network (DQN) is a reinforcement 

learning approach that uses a neural network to help the 

missile seeker make the best decisions during flight. 

Instead of relying on fixed mathematical models, DQN 

learns from experience by trying different actions and 

observing the results. In the case of target matching for 

Anti-Ship Missiles (ASMs), the seeker’s input (such as 

ship formation, decoys, and distortions) is treated as the 

system state, and the DQN suggests the best action, like 

adjusting alignment or rejecting decoys, to maximize 

correct target identification. Over time, the network 

learns patterns of target movement and deception, 

allowing the missile to adapt and improve accuracy in 

the terminal phase of engagement. 

2.2:Deep Q-Network (DQN) Based Target Matching 

Framework for Anti-Ship Missiles: 

In Anti-Ship Missile (ASM) target matching, the seeker 

must continuously decide how to align with the ship 

formation while rejecting decoys and distortions. This 

problem can be modeled as a reinforcement learning 

task, where the seeker is the agent and the environment 

is the ship formation with possible countermeasures. 

• State(s):seeker observations (shippositions, 

formations shape ,decoys distortions). 

• Action (a): alignment decision (e.g., rotate, translate, 

reject decoy, adjust trajectory). 

• Reward (r): positive if the correct target is matched, 

negative if alignment fails or decoys are tracked. 

• Next state (s′): updated seeker view after the action. 

1.Q-Function Approximation: Instead of a Q-table, a 

neural network estimates the action-value function: 

Q(s,a;θ)≈Expected future reward of taking action a in state s 

2. Target Value (Bellman Equation): 

For each experience (s,a,r,s′): 

 y=r+𝛾 𝑚𝑎𝑥
𝑎′

𝑄(s′, 𝑎′; 𝜃-) 

where y is target value, γ is  discount factor  and  θ-target 

network weights   

3. Loss Function (Error between prediction and 

target):This ensures the network learns to predict 

Q-values closer to the actual target values. 

L(𝜃)= (y-Q(s,a; 𝜃)) 

4. Parameter Update Rule: 

Using gradient descent: 

 𝜃 ← 𝜃 + 𝛼(𝑦 − 𝑄(𝑠, 𝑎;𝜃))𝛻𝜃Q(s,a; 𝜃) 

Where α is  learning rate 

5.Policy (𝜺 −greedy in ASM Context): 

a={
𝑟𝑎𝑛𝑑𝑜𝑚𝑎𝑐𝑡𝑖𝑜𝑛(𝑒𝑥𝑝𝑙𝑜𝑟𝑒), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜺
𝑎𝑟𝑔 𝑚𝑎𝑥𝑎  𝑄(𝑠, 𝑎; 𝜃),    𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜀

 

Where DQN balances trying new actions (exploration) 

with using the best learned actions (exploitation) for 

effective target matching. 

The DQN helps the seeker learn the best alignment and 

rejection actions to maximize performance against 

decoys, distortions, and moving ship formations. The 

effectiveness is measured using three key metrics: 

1.Matching Efficiency(ME):It tells how well the detected 

seeker points match with the reference (FCR) points) 

 ME= 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑝𝑜𝑖𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠
 X 100% 

2.Error Rate(ER):it tells how often the seeker makes 

mistakes by aligning with decoys distortions  

or incorrect targets  

ER= = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑟𝑜𝑛𝑔 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑚𝑎𝑡𝑐ℎ𝑒𝑠
 X 100%  

3.Sucess Rate(SR): It shows how often the seeker 

correctly identifies the true target. 

SR = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑇𝑎𝑟𝑔𝑒𝑡 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑖𝑠
 X 100%  

2.3:Process of Target Selection Algorithm for 

Anti-ShipMissiles using DQN: 

 
Fig:3: Target Selection Process for Anti-Ship   Missiles using 

DQN 
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The flowchart outlines a process that applies a Deep 

Q-Network (DQN) for target selection in anti-ship 

missiles. It begins by initializing the system and defining 

input points from the seeker and reference data. The 

current state is generated and passed through the 

Q-Network to select the best action for alignment. The 

network computes the target value, loss function, and 

updates its parameters to improve learning. An 

alignment error check determines whether the selection 

is accurate; if not, the loop continues to refine the 

process. Once the error falls below the threshold, the 

final results are displayed along with performance 

metrics such as Matching Efficiency, Error Rate, and 

Success Rate, and the process ends. 

 

3.SIMULATION AND RESULTS: 

To test the performance of the proposed DQN-based 

target selection algorithm, we used three scenarios:  

(1) Rigid Target Matching, (2) Distorted Target 

Matching, and (3) Distorted Target Matching with 

Decoys. These cases help to check how well the DQN can 

correctly identify the true target under different 

conditions. 

Pentagon-Based Target Matching: 

 1.Rigid Case: 

 
Fig.4: Rigid Case Alignment 

2.Distortion Case: 

Fig.5: Distortion Case Alignment 

3.Distortion With Decoys Case: 

 
Fig.6: Distortion with decoys with alignment 

Hexagon Based Target Matching: 

1.Rigid Case: 

    
Fig.7: Rigid case alignment 

2.Distortion Case: 

 
Fig.8: Distortion Case Alignment 

 

3.Distortion with Decoys Case: 

 
 Fig.9: Distortion with Decoys Case 
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The proposed DQN-based framework for Anti-Ship 

Missile (ASM) target selection is evaluated using 

Pentagon and Hexagon-based geometric matching to 

test robustness, adaptability, and accuracy under 

realistic scenarios. The seeker data is compared against 

Fire Control Radar (FCR) reference shapes, ensuring 

correct target recognition even with distortions and 

decoys. 

Transformation Scenarios Tested: 

1. Rigid Transformation – Clean translation and 

rotation alignment between FCR shape 

(Pentagon/Hexagon) and seeker data. 

2. Distortion – Seeker data undergoes mild 

deformation due to noise, irregular ship 

formation, or sensor jitter. 

3. Distortion with Decoys – The most challenging 

case, where seeker data is distorted and false 

decoy points are added to mislead alignment. 

Perfomance Insights: 

1. Pentagon-based Matching: 

• Provides a simpler geometric reference with 

fewer vertices, making alignment faster and 

computationally efficient. 

• Useful for scenarios with low noise and mild 

distortions, but may be less resilient to heavy 

decoy interference. 

2. Hexagon-based Matching: 

• Offers a more structured reference with six 

vertices, giving higher geometric precision and 

stability. 

• More effective under complex distortion and 

decoy-infused scenarios, ensuring better 

alignment and rejection of false targets. 

3. DQN Integration: 

• The DQN intelligently selects the optimal 

transformation actions (alignment, rejection, or 

adjustment) to minimize mismatch. 

• Under pentagon and hexagon frameworks, 

DQN learns to filter decoys and improve success 

rate, even when seeker data is noisy or partially 

distorted. 

 

1.Rigid Case Transformation: In this case The seeker data is 

a clean translation/rotation of the formation. With no 

deformation, the relative geometry is preserved and the 

correct target point is straightforward to confirm. 

2.Distortion Case: The seeker points may shift due to 

dynamics or sensing effects, causing small 

mismatches.DQN corrects this by focusing on overall 

pattern consistency instead of single point errors. 

3.Distortion with Decoys: In this case, distortions and false 

decoys appear near the center or edges to 

Confuse the seeker. DQN counters this by focusing 

On stable formation patterns to identify the true target. 

 

Comparison of Pentagon and Hexagon Target Matching 

using DQN: 

The table compares the performance of DQN-based 

target matching for Pentagon and Hexagon formations 

under three conditions: Rigid, Distortion, and Distortion 

with Decoys. 

Shape Condition 
Matching 

Efficiency  

Error 

Rate 

Success 

Rate (SR) 

Pentagon Rigid 100.00 0.00 100% 

 Distortion 94.72 0.24 97.72% 

 Distortion + 

Decoys 
85.48 0.47 96.30% 

Hexagon Rigid 100.00 0.00 100% 

 Distortion 93.14 0.06 99.74% 

 Distortion + 

Decoys 
85.08 0.24 90.10%             

           Table.1:Performance Comparison of Pentagon and 

Hexagon Target Matching using  

 

4.CONCLUSION 

The proposed Deep Q-Network (DQN) based 

framework provides a robust and intelligent solution for 

target selection in the terminal phase of missile guidance 

systems. By continuously learning from seeker 

observations, DQN adapts to distortions, noise, and 

decoy interference, allowing it to distinguish true targets 

from false ones. The model performs effectively across a 

variety of formations, including both regular structures 

like pentagons and hexagons .Tested under different 

transformation scenarios—rigid alignment, distortion, 

and distortion with decoys—DQN demonstrates high 

success rates, strong matching efficiency, and 

significantly reduced false positives. Its ability to 

integrate past learning with real-time adaptability makes 

it a reliable and scalable solution for advanced guidance 

and tracking applications. 
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