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In anti-ship missile systems, one of the biggest challenges is accurately identifying the real
target in complex and noisy sea environments, where false targets(decoys) and distorted
Accuracy , signals can makes things difficult. To overcome this problem , we used an advanced
Target Selection,

Rigid and Non Rigid

Transformations,

learning technique called Deep — Q- Network

(DQN), which is specially trained to recognize the target. These algorithm confirm accurate
target identification even in worst situations by transforming seeker data through rigid and
Reinforncement Learning non rigid transformations. The methodology involves aligning real-time seeker data with
reference data to enable adaptive learning. Three distinct scenarios —Rigid, Distortion, and
Distortion with Decoys are simulated to evaluate the system’s robustness. Results showed
that the proposed method maintains high matching efficiency and accuracy , effectively

identifying the designated target in varying formations and difficult environments.

1. INTRODUCTION (DQN), which helps the missile to choose the right

In modern warfare, accurately selecting the right
target from a group of ships is a major challenge for
missile systems. The missile’s seeker must differentiate
between real targets and decoys, even under changing
conditions like movement, weather, and enemy
interference. To support this, the Fire Control Radar
(FCR) provides reference data about target positions. To
improve decision-making, we wused an advanced

machine learning method called Deep Q-Network
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target.
Deep Q-Networks (DQNs) are an

improvement in reinforcement learning. They combine

important

deep neural networks with the Q-learning method to
make smarter decisions. In DQNs, a neural network is
used to estimate the Q-value, which tells us how good a
certain action is in a given situation based on future

rewards.
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The main features of DQNs are:

e Using deep neural networks to estimate
Q-values

e Experience replay, which stores past experiences
and uses them during training to avoid learning
from similar data repeatedly

e Target networks, which help keep the learning

process stable and reliable

1.1.Problem Statement:

In terminal-phase anti-ship missile (ASM) systems,
identifying and engaging the correct target among
multiple ships in a dynamic and deceptive maritime
environment remains a major challenge. Factors such as
sensor noise , decoy deployment overlapping
formations, and irregular ship arrangements often lead
to confusion and misidentification. Traditional methods
struggle to adapt in these complex situations because
they lack the intelligence to make real-time decisions in
uncertain and rapidly changing scenarios.

To handle these challenges, there is a need for a smart
and flexible target selection system that can learn and get
better over time. This paper solves the problem using a
Deep Q-Network (DQN), a type of reinforcement
learning that helps the missile make smart choices even
in confusing situations. The DQN-based system can
study the environment, tell the difference between real
targets and decoys, and pick the most likely correct
one—even when there 1is noise, distortion, or
interference. By learning from past experiences, this
method improves both accuracy and reliability during

the missile’s final attack phase.
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Fig.1: Target Identification and Detection

The algorithm is tested in three key scenarios:

ideal conditions with rigid ship formation alignment, (ii)
dynamic and non-ideal ship configurations, and (iii)
complex environments containing false targets or

decoys. Each scenario is simulated to evaluate the
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matching accuracy, error rate, and success rate of correct
target identification. The Deep Q-Network (DQN)
algorithm is employed independently to enhance the
decision-making process in terminal-phase anti-ship

missile guidance.

Case 1: Rigid Path Missile
able straight-line path - Easy to intercept
- - oy
1y Ship (Brown) )
Case 2: Path Distortion
Missile with unpredictable path - Difficull o intercept
- - o Gy
v Ship (Brown)
Case 3: Path Distortion with Decoys
Missile with decoys - Multiple false targets confuse defense systems
E (Brown) hip ¢

Fig:2 - Three representative scenarios.

This method enables the system to learn from its

environment, adapt to changing conditions, and
accurately select the most likely real target—even under
distortion, noise, and deception. This approach offers a
lightweight and efficient solution suitable for real-time
application in onboard missile systems.

1.2: Literature review:

In this work, proposed a data alignment technique to
align seeker and radar data to help anti-ship missiles
accurately identify the true target. This method showed
strong performance even when ships moved or decoys
were present.

In this study, a hybrid Genetic Algorithm-Back
Propagation (GA-BP) method is used to enhance target
recognition during the missile’s terminal phase by
optimizing neural network training. The approach
showed better accuracy and stability in identifying real
targets, even in noisy or complex conditions

In this work, a target selection method using Radar
Cross Section (RCS) and Hausdorff distance is applied to
match ship positions and improve identification
accuracy. This strategy enhances the missile’s ability to
select the correct target, even with decoys or changing
formations.

In this paper, deep reinforcement learning methods
like DQN, DDPG, and BP neural networks are used to
help missiles make smart decisions in complex
environments. The trained system showed strong ability
to avoid threats and adapt to changing conditions,

improving missile autonomy and reliability.




In this study, a Deep Q Network (DQN) was used to

help submarines and warships learn intelligent
navigation and target tracking in complex naval
environments. The method outperformed traditional
path-planning by learning faster and navigating more
efficiently using custom rewards and a stable training
setup.

In this study, a Deep Q-Network (DQN) was
re-implemented to clarify important training details that
were missing in the original model. The improved
version runs faster and is easier to adapt for new

applications beyond video games.

2. DEEP Q NETWORKS (DQN)

The Deep Q Network (DQN) is a reinforcement

learning approach that uses a neural network to help the
missile seeker make the best decisions during flight.
Instead of relying on fixed mathematical models, DON
learns from experience by trying different actions and
observing the results. In the case of target matching for
Anti-Ship Missiles (ASMs), the seeker’s input (such as
ship formation, decoys, and distortions) is treated as the
system state, and the DQN suggests the best action, like
adjusting alignment or rejecting decoys, to maximize
correct target identification. Over time, the network
learns patterns of target movement and deception,
allowing the missile to adapt and improve accuracy in
the terminal phase of engagement.
2.2:Deep Q-Network (DQN) Based Target Matching
Framework for Anti-Ship Missiles:
In Anti-Ship Missile (ASM) target matching, the seeker
must continuously decide how to align with the ship
formation while rejecting decoys and distortions. This
problem can be modeled as a reinforcement learning
task, where the seeker is the agent and the environment
is the ship formation with possible countermeasures.

e State(s):seeker observations (shippositions,

formations shape ,decoys distortions).

e Action (a): alignment decision (e.g., rotate, translate,

reject decoy, adjust trajectory).

e Reward (r): positive if the correct target is matched,

negative if alignment fails or decoys are tracked.

e Next state (s'): updated seeker view after the action.
1.Q-Function Approximation: Instead of a Q-table, a
neural network estimates the action-value function:
Q(s,a;0)=Expected future reward of taking action a in state s
2. Target Value (Bellman Equation):
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For each experience (s,4,7,5"):

y=r+y max Q(s',a’; 6-)

where y is target value, y is discount factor and 6-target
network weights

3. Loss Function (Error between prediction and
target):This ensures the network learns to predict
Q-values closer to the actual target values.

L(8)=(y-Q(s,a; 8))

4. Parameter Update Rule:

Using gradient descent:

0« 0+aly—0Q(s,a0)VyQ(s,a0)

Where a is learning rate

5.Policy (g —greedy in ASM Context):

={ randomaction(explore), with probability &

arg max, Q(s,a;8), with probability 1 — ¢

Where DQN balances trying new actions (exploration)
with using the best learned actions (exploitation) for
effective target matching.
The DQN helps the seeker learn the best alignment and
rejection actions to maximize performance against
decoys, distortions, and moving ship formations. The
effectiveness is measured using three key metrics:
1.Matching Efficiency(ME):It tells how well the detected

seeker points match with the reference (FCR) points)
ME= Number of correctly matched points X 100%

Total reference points

2.Error Rate(ER):it tells how often the seeker makes
mistakes by aligning with decoys distortions

or incorrect targets

ER== Number of wrong matches X 100%
Total matches

3.Sucess Rate(SR): It shows how often the seeker

correctly identifies the true target.

SR

_ Number of Successful Target Selections

X 100%

Total trais

of Target Selection
Anti-ShipMissiles using DQN:

Target Selection Process for Anti-Ship
Missiles using DQN
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Fig:3: Target Selection Process for Anti-Ship Missiles using
DQN




The flowchart outlines a process that applies a Deep
Q-Network (DQN) for target selection in anti-ship
missiles. It begins by initializing the system and defining
input points from the seeker and reference data. The
current state is generated and passed through the
Q-Network to select the best action for alignment. The
network computes the target value, loss function, and
updates its parameters to improve learning. An
alignment error check determines whether the selection
is accurate; if not, the loop continues to refine the
process. Once the error falls below the threshold, the
final results are displayed along with performance
metrics such as Matching Efficiency, Error Rate, and

Success Rate, and the process ends.

3.SIMULATION AND RESULTS:

To test the performance of the proposed DQN-based
target selection algorithm, we used three scenarios:
(1) Rigid Target Matching, (2) Distorted Target
Matching, and (3) Distorted Target Matching with
Decoys. These cases help to check how well the DQN can
correctly identify the true target under different
conditions.
Pentagon-Based Target Matching:
1.Rigid Case:

FCR Data (Pentagon) Seeker Data (Eitipf)ignment: Proper Pentagon Inside EI

—&— Pentagon 40 Elllpse Ellipse
30 W Centrod W CSentrod - g- + Pentagon
Common Centrald
s0F
20
20 20
e 10F
o - o
10 -10
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-0 -30
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-40f -40
-10 0 10 -10 Q 1o Matching Efficiency = 100.00%

Error Rate = 0.0000

Fig.4: Rigid Case Alignment
2.Distortion Case:

FCR Data (Pentagon) Secker Data (DistorteaIEilip==pt: Pentagon vs Distorted Ellip:
1

—&— Fentagon Distorted Elllpse Distoried Elllpse
30 W centrold #  centrol —&— Pantagon
4  EllpsecCentroid
30
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20 ook
oot 20
-30 -30
LN
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10 o 10 10 o 10 Error Rate = 0.2484
Success Rate = 97.72%

Fig.5: Distortion Case Alignment
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3.Distortion With Decoys Case:

Hexagon Based Target Matching:
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Fig.8: Distortion Case Alignment

3.Distortion with Decoys Case:

Success Rate
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FCR Data (Ideal Hexag8epker Data (Distortion + Deddiys)l Alignment with Decoys
H

40 [—=@=—Hexagon
W Centroid a0l
30
30t
20f
20
10
10 [
og
o
10 10k
-20 20
30l
30y Distorted Ellipse
Decoys (Pink)
_a0| _40 ™ centroid
10 o 10 10 o 10

Fig.9: Distortion with Decoys Case

e
International Journal for Modern Trends in Science and Technology

40|

Distorted Ellipse
Decoys (Pink)

+ Hexagon
Seeker Centroid

30F

20

20}

30}

Matching Efficiency = 85.08%
Error Rate = 0.2413
Success Rate = 90.10%




The proposed DQN-based framework for Anti-Ship
Missile (ASM) target selection is evaluated using
Pentagon and Hexagon-based geometric matching to
adaptability,

realistic scenarios. The seeker data is compared against

test robustness, and accuracy under
Fire Control Radar (FCR) reference shapes, ensuring
correct target recognition even with distortions and
decoys.

Transformation Scenarios Tested:

1. Rigid Transformation — Clean translation and

rotation alignment between FCR shape
(Pentagon/Hexagon) and seeker data.

2. Distortion - Seeker data undergoes mild
deformation due to noise, irregular ship

formation, or sensor jitter.

3. Distortion with Decoys — The most challenging
case, where seeker data is distorted and false
decoy points are added to mislead alignment.

Perfomance Insights:
1. Pentagon-based Matching:

e Provides a simpler geometric reference with
fewer vertices, making alignment faster and
computationally efficient.

e Useful for scenarios with low noise and mild
distortions, but may be less resilient to heavy
decoy interference.

2. Hexagon-based Matching:

e Offers a more structured reference with six
vertices, giving higher geometric precision and
stability.

e More effective under complex distortion and
decoy-infused scenarios, ensuring better
alignment and rejection of false targets.

3. DON Integration:

e The DON intelligently selects the optimal
transformation actions (alignment, rejection, or
adjustment) to minimize mismatch.

e Under pentagon and hexagon frameworks,
DON learns to filter decoys and improve success
rate, even when seeker data is noisy or partially
distorted.

1.Rigid Case Transformation: In this case The seeker data is
a clean translation/rotation of the formation. With no
deformation, the relative geometry is preserved and the

correct target point is straightforward to confirm.
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2.Distortion Case: The seeker points may shift due to

dynamics or sensing effects, causing small
mismatches.DQN corrects this by focusing on overall
pattern consistency instead of single point errors.
3.Distortion with Decoys: In this case, distortions and false
decoys appear near the center or edges to

Confuse the seeker. DQN counters this by focusing

On stable formation patterns to identify the true target.

Comparison of Pentagon and Hexagon Target Matching
using DQN:

The table compares the performance of DQN-based
target matching for Pentagon and Hexagon formations

under three conditions: Rigid, Distortion, and Distortion

with Decoys.
. Matching Error Success
Shape  Condition .
Efficiency Rate Rate (SR)
Pentagon Rigid 100.00 0.00 100%
Distortion  94.72 024 97.72%
Distortion +
85.48 047  96.30%
Decoys
Hexagon Rigid 100.00 0.00 100%
Distortion  93.14 0.06 99.74%
Distortion +
85.08 024 90.10%

Decoys

Table.1:Performance Comparison of Pentagon and

Hexagon Target Matching using

4.CONCLUSION
The (DQN) based

framework provides a robust and intelligent solution for

proposed Deep Q-Network

target selection in the terminal phase of missile guidance

systems. By continuously learning from seeker
observations, DOQN adapts to distortions, noise, and
decoy interference, allowing it to distinguish true targets
from false ones. The model performs effectively across a
variety of formations, including both regular structures
like pentagons and hexagons .Tested under different
transformation scenarios—rigid alignment, distortion,
and distortion with decoys—DQN demonstrates high
success rates, strong matching efficiency, and
significantly reduced false positives. Its ability to
integrate past learning with real-time adaptability makes
it a reliable and scalable solution for advanced guidance

and tracking applications.
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