

71 International Journal for Modern Trends in Science and Technology

As per UGC guidelines an electronic bar code is provided to secure your paper

International Journal for Modern Trends in Science and Technology

Volume 11, Issue 09, pages 71-78.
ISSN: 2455-3778 online

Available online at: http://www.ijmtst.com/vol11issue09.html
DOI: https://doi.org/10.5281/zenodo.17148931

Machine Learning for Web Vulnerability Detection

SK.K.K.B Vali Basha1 , V.Navyasri2, S.Ramya2, Ch.Vanitha2, S.Navya2

1Associate Professor Department of CSE, Vijaya Institute of Technology for Women, Enikepadu, AP, INDIA.
2Department of CSE, Vijaya Institute of Technology for Women, Enikepadu, AP, INDIA.

To Cite this Article

SK.K.K.B Vali Basha , V.Navyasri, S.Ramya, Ch.Vanitha & S.Navya (2025). Machine Learning for Web Vulnerability

Detection. International Journal for Modern Trends in Science and Technology, 11(09), 71-78.

https://doi.org/10.5281/zenodo.17148931

Article Info

Received: 07 August 2025; Accepted: 31 August 2025.; Published: 05 September 2025.

Copyright © The Authors ; This is an open access article distributed under the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

KEYWORDS ABSTRACT

Machine Learning,

Random Forest,

Logistic Regression,

Deep Learning,

Cross-site Scripting.

With the rapid expansion of web applications, cybersecurity threats have escalated, making

web vulnerability detection a crucial aspect of modern security. Traditional techniques,

including static and dynamic analysis, often suffer from limited scalability, high false

positives, and an inability to detect zero-day vulnerabilities. To overcome these challenges,

this project employs machine learning-based automated web vulnerability detection,

enhancing accuracy and adaptability.

By training models on historical security vulnerabilities, the system analyzes source code,

web requests, and user inputs to predict potential security risks such as SQL Injection

(SQLi), Cross-Site Scripting (XSS), and Remote Code Execution (RCE). Using supervised

learning algorithms like Random Forest, Support Vector Machines (SVM), and Deep

Neural Networks (DNNs), it significantly improves detection efficiency.

This AI-driven approach minimizes manual security assessments while enabling real-time

identification of vulnerabilities. Unlike rule-based security tools, the system learns

dynamically from new attack patterns and cyber threat intelligence feeds, making it highly

adaptable. Future enhancements will integrate deep learning, adversarial training, and

automation tools, ensuring robust web application security against evolving cyber threats.

1. INTRODUCTION

The rapid With growth of the internet, web security has

become a significant concern for organizations and

individuals alike. The digital world is expanding at an

unprecedented rate, making it an essential part of

everyday life. From online banking to e-commerce,

social media, and cloud computing, users rely on

web-based platforms for various activities. However,

this expansion has also led to an increase in cyber

threats, including malicious URLs, phishing attacks,

malware infections, and data breaches.

http://www.ijmtst.com/vol11issue09.html
https://doi.org/10.5281/zenodo.17148931
https://doi.org/10.5281/zenodo.17148931
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.17148931
http://www.ijmtst.com/

72 International Journal for Modern Trends in Science and Technology

Cybercriminals exploit vulnerabilities in web systems to

conduct attacks that compromise sensitive data, disrupt

services, and cause financial losses. Traditional security

mechanisms such as firewalls and blacklists have been

used to prevent such threats, but they are no longer

sufficient in tackling advanced and evolving cyber

threats.

One of the most common and dangerous attack vectors

is the use of malicious URLs, which are fraudulent web

addresses designed to deceive users into revealing

personal information or downloading harmful software.

Attackers manipulate URLs to make them appear

legitimate, often using typosquatting, shortened links,

and obfuscated domains to evade detection. As

traditional methods struggle to keep up with the

dynamic nature of these attacks, Machine Learning (ML)

has emerged as an effective solution for automated web

vulnerability detection.

This project focuses on developing a Machine

Learning-based system for detecting malicious URLs.

The system extracts features from URLs, analyzes

patterns, and classifies them as either benign or

malicious. By leveraging Flask for deployment, this

solution provides an efficient, real-time web security

mechanism that can help prevent cyber threats.

1.1. Importance of Web Security

Web security is a critical aspect of modern cybersecurity

due to the increasing reliance on internet-based services.

The following factors highlight the importance of web

security:

1.2.1 Protecting Sensitive Information

With interact web platforms by sharing sensitive data

such as login credentials, financial details, and personal

information. If web security is compromised, this data

can be stolen and misused, leading to identity theft,

financial fraud, and reputational damage. Organizations

handling large volumes of user data, such as banks,

healthcare providers, and e-commerce platforms, must

ensure robust security mechanisms to protect user

privacy.

a) 1.2.2 Preventing Malware Attacks

Hackers use malicious websites to distribute malware,

such as ransomware, spyware, and trojans.

Unsuspecting users clicking on malicious links may

unknowingly install malware that can steal data,

corrupt files, or hijack computer systems. Web security

measures, including machine learning-based URL

detection, help in preventing malware infiltration and

mitigating cyber risks.

1.2.3 Ensuring Business Continuity

Cyberattacks can lead to website downtime, data loss,

and system failures, affecting business operations and

customer trust. Organizations must prioritize web

security to ensure seamless service delivery and protect

their brand reputation. E-commerce platforms,

financial institutions, and government agencies are

particularly vulnerable to cyber threats, making it

crucial to implement automated threat detection

systems.

1.2.4 Combating Phishing and Fraudulent Activities

Phishing is one of the most prevalent cyber threats where

attackers trick users into providing confidential

information by impersonating legitimate websites. Fake

login pages, fraudulent payment portals, and social

engineering techniques are commonly used to deceive

users. Machine Learning models trained to detect

suspicious URL patterns can help mitigate phishing

attacks and improve overall cybersecurity.

1.2.5 Compliance with Cybersecurity Regulations

Many industries are required to comply with data

protection laws and cybersecurity regulations, such as:

● General Data Protection Regulation (GDPR) –

Protects user privacy in the European Union.

● Health Insurance Portability and

Accountability Act (HIPAA) – Ensures the security

of patient data in the healthcare sector.

● Payment Card Industry Data Security Standard

(PCI-DSS) – Protects online payment transactions.

Failure to adhere to these regulations can result in legal

penalties, financial losses, and reputational damage.

Implementing advanced web security solutions such as

ML-based malicious URL detection helps organizations

stay compliant with cybersecurity frameworks.

1.3 Rise of Malicious URLs

1.3..1 What Are Malicious URLs?

73 International Journal for Modern Trends in Science and Technology

A malicious URL is a web link created with the intention

of harming users or compromising computer systems.

Attackers craft deceptive URLs to steal sensitive data,

spread malware, or redirect users to fraudulent sites.

These URLs often appear legitimate, making it difficult

for users to differentiate between safe and harmful links.

1.3.2 Common Types of Malicious URLs

1.Phishing URLs – Imitate trusted websites to steal

usernames, passwords, and banking details.

2.Malware-hosting URLs – Distribute harmful

software such as viruses, trojans, and spyware.

3. Redirect URLs – Automatically send users to an

unauthorized destination, leading to fraudulent

websites.

4. Shortened URLs – Used to disguise malicious intent,

often found in emails and social media.

5.Drive-by Download URLs – Trigger the automatic

installation of malware when visited.

(1) 1.3.3 Techniques Used by Cybercriminals

Hackers utilize various techniques to make malicious

URLs appear authentic, including:

o Typosquatting – Registering domain names

similar to legitimate ones (e.g., g00gle.com

instead of google.com).

o Obfuscation – Using random characters to

disguise URLs (bit.ly/randomcode).

o Unicode Spoofing – Using Unicode characters

that look similar to real letters.

o HTTPS Manipulation – Fake websites using

HTTPS to appear secure but still serve malware.

 1.3.4 Challenges in Detecting Malicious URLs

Detecting malicious URLs is challenging because

attackers constantly modify domain structures, content,

and redirections to bypass traditional security measures.

Signature-based methods fail to detect zero-day threats

(newly emerging attacks), making machine learning-

based detection a promising solution.

1.4 Role of Learning Machine in Cybersecurity

Machine Learning algorithms analyze patterns in URLs,

domain names, and website behaviors to classify them

as either benign or malicious. Unlike traditional

rule-based methods, ML models:

o Continuously learn from new threats.

o Detect previously unknown attacks.

o Identify subtle malicious patterns that human

analysts might miss.

Proposed System

System Overview

With the increasing complexity and sophistication of

web-based attacks, traditional security mechanisms like

signature-based intrusion detection and rule-based

firewalls struggle to keep up with evolving threats. To

address these limitations, we propose an intelligent

Machine Learning (ML)-based Web Vulnerability

Detection System that can effectively identify and

mitigate cyber threats in real time.

2. System Architecture

 The proposed system consists of the following key

components:

 URL Feature Extraction Module: Extracts key features

from a given URL, such as length, number of special

characters, subdomain depth, and presence of suspicious

patterns.

o Machine Learning Classifier: Uses a trained model

to classify URLs as malicious or benign.

o Real-Time Detection System: Deploys the ML

model in a web application that can predict web

vulnerabilities dynamically.

o Logging and Monitoring System: Maintains logs of

detected vulnerabilities for security analysis and

improvement

3.Working Mechanism

1.Data Collection & Preprocessing:

o The system gathers data from web traffic logs,

security databases, and user inputs.

o ○URLs are analyzed based on extracted features

like domain structure, length, entropy, and

character frequency.

2.Feature Extraction and Selection:

o Key features influencing malicious web

behaviors are extracted, such as:

o Presence of IP addresses in URLs (often linked

to phishing).

74 International Journal for Modern Trends in Science and Technology

o Number of redirections (can indicate malicious

intent).

o Use of uncommon Top-Level Domains (TLDs)

(e.g., .xyz, .top).

1.Model Training and Classification:

o A machine learning model (Random Forest,

SVM, or Deep Learning model) is trained on

labeled datasets to classify web vulnerabilities.

o The model learns from past attack patterns and

continuously updates itself to recognize new

threats.

2.Deployment & Real-Time Detection:

o The trained model is deployed in a Flask-based

web application to assess URLs in real-time.

o Users can submit a URL, and the system will

instantly classify it as "Malicious" or "Benign."

Advantages Over Existing Solutions

 The proposed system offers several advantages over

traditional web security mechanisms:

Real-Time Detection

 Unlike traditional static rule-based security measures,

our system analyzes URLs in real-time and instantly

provides classification results.

o This is crucial for protecting users from

phishing attacks, drive-by downloads, and

other web-based threats.

Adaptability to Evolving Threats

 Traditional security methods struggle with zero-day

vulnerabilities and new attack techniques.

o Our machine learning model continuously

learns from new data, ensuring it remains

effective against emerging cyber threats.

System Architecture

 The Machine Learning-Based Web Vulnerability

Detection System is designed to classify URLs as

malicious or benign based on extracted features. The

architecture consists of the following components:

 Key Components of the System

 1.User Interface (UI) & Web Application

o A web-based front-end where users submit

URLs for classification.

o Built using Flask, allowing interaction with the

backend ML model.

2.Data Collection & Preprocessing Module

o Gathers labeled datasets of malicious and

benign URLs from sources like:

 ■ OpenPhish

 ■ PhishTank

 ■ Alexa Top Sites

 ○ Cleans and preprocesses data for feature

extraction.

3.Feature Extraction Module

o Extracts relevant URL-based, lexical, and

domain-related features, including:

 ■ URL Length

 ■ Number of Special Characters

 ■ Presence of Suspicious Keywords (e.g.,

"login", "secure", "bank")

 ■ Use of IP Addresses instead of

Domains

 Prediction & Decision Engine

o Takes extracted features as input and applies

the trained model.

o Outputs a classification result: "Malicious" or

"Benign."

Logging & Monitoring System

o Maintains records of classified URLs.

o Allows security analysts to track and analyze

attack trends.

Model Training & Continuous Learning

o Periodic retraining of the model using updated

o threat intelligence. ○ Ensures adaptability to

evolving cyber threats.

Fig. System Architecture

75 International Journal for Modern Trends in Science and Technology

Workflow of URL Classification

 The URL classification workflow follows a step-by-step

process, from user input to final classification.

 Step-by-Step URL Classification Process

User Step 1: Input (URL Submission)

● The user submits a URL for

classification via the web application

interface.

● The request is sent to the backend for

processing.

 Step 2: Feature Extraction

 ● The system extracts relevant lexical and structural

features from the URL, including:

○ Length of URL (Longer URLs

may be suspicious)

○ Number of Special Characters

(Hyphens, dots, slashes)

○ Presence of Keywords (e.g.,

"bank", "secure", "login")

○ Use of IP Addresses instead of

Domain Names

○ Domain & Subdomain Length

 Step 3: Preprocessing & Normalization

● Extracted features are standardized

and normalized to ensure consistency.

● Features are converted into a format

suitable for the ML model.

 Step 4: Machine Learning-Based Classification

 The extracted features are passed through the trained

ML model (Random Forest, Decision Tree, or Neural

Network).

● The model predicts whether the URL is

benign or malicious based on its

learned patterns.

Step 5: Prediction Output

 The ML model provides a classification result:

○ "Benign" → Safe URL

○ "Malicious" → Potential

phishing/malware link

● The system returns this classification to

the user through the web application.

Step 6: Logging & Security Monitoring

● The system logs detected malicious URLs for further

analysis. ● Data is used for retraining the model and

improving accuracy.

 Use case Diagram:

This use case diagram illustrates the interaction between

two main actors, the User and the Admin, in a web

application vulnerability detection system. The User can

upload web app code and view the generated report. The

Admin has additional privileges, including detecting

vulnerabilities, managing the training dataset, and

updating the detection model. Both the User and Admin

share access to uploading code and viewing reports,

ensuring collaborative functionality while maintaining

administrative control for system updates and

analysis accuracy.

Activity Diagram:

activity diagram represents the step-by-step process of

detecting in a web application. It starts with uploading

the web app code, followed by preprocessing the code to

prepare it for analysis. Next, the system detects

vulnerabilities within the code. Once detection is

complete, a report is generated based on the findings.

Finally, the user can view the report to understand the

vulnerabilities identified in the web application.

76 International Journal for Modern Trends in Science and Technology

If drowsiness is detected for a sustained period, the

system proceeds to trigger an alert.

Fig-ROC Curve for drowsiness detection

This sequence diagram illustrates the interaction between the User, System, Model, and Report in the process of

vulnerability detection. The User begins by uploading the source code to the System. The System then sends the

code to the Model for analysis. After the Model analyzes the code, it returns the identified vulnerabilities to the

System. The System uses this information to generate a detailed report and finally displays the report

back to the User.

Results & Evaluation

 The given Flask-based machine learning application

classifies URLs as either Malicious or

Benign based on extracted features. The evaluation of

the model’s performance involves analyzing accuracy,

precision, recall, and comparing it with other models.

INPUT SCREENS

(2) OUTPUT SCREENS

Fig:- Prediction of Benign URL

77 International Journal for Modern Trends in Science and Technology

 Fig. 15.2. Prediction of Malicious URL

(a) Accuracy, Precision, Recall Analysis

 Accuracy:

 Accuracy measures the overall correctness of the

model's predictions.

 True Positives (TP): Malicious URLs correctly classified

as malicious.

● True Negatives (TN): Benign URLs correctly

classified as benign.

● False Positives (FP): Benign URLs incorrectly

classified as malicious.

● False Negatives (FN): Malicious URLs incorrectly

classified as benign.

A high accuracy score indicates the model’s

effectiveness in distinguishing between safe and

harmful URLs.

Precision:

 Precision determines how many of the URLs classified

as malicious were actually maliciousA high precision

value means the model has fewer false positives,

ensuring legitimate websites are not wrongly flagged.

Recall (Sensitivity):

Recall measures how many actual malicious URLs were

correctly identified.A high recall means that the model

detects most of the actual threats, reducing the risk of

missing dangerous URLs.

F1 Score:

 The F1 Score is the harmonic mean of precision and

recall, providing a balanced This metric is particularly

useful when there is an imbalance between benign and

malicious URLs in the dataset.

2. Performance Comparison with Other Models

 To evaluate the effectiveness of this URL malware

detection model, we compare it with other traditional

machine learning models used for similar tasks:

Conclusion :

 The "Machine Learning for Web Vulnerability

Detection" project successfully demonstrates the

application of machine learning for real-time URL

classification to detect potentially malicious or benign

websites. By extracting key lexical and structural

features from URLs, the trained model effectively

identifies patterns commonly associated with web-

based threats.

Key Achievements:

 Automated Feature Extraction – Analyzes URL

properties such as length, special characters, and domain

structure to detect suspicious websites.

Machine Learning-Based Classification – Utilizes a

pre-trained model for fast and accurate URL threat

detection.

Flask API for Real-Time Detection – Deploys as a

lightweight, interactive web application for easy use and

integration.

Logging & Robust Error Handling – Ensures stability

and maintainability of the system by tracking API

requests and handling exceptions.

Future Scope & Enhancements:

● Implement deep learning models (e.g., CNNs,

RNNs, Transformers) for more robust threat

detection

● Enhance with real-time integration of external

security databases (Google Safe Browsing,

VirusTotal, PhishTank)

● Develop a browser extension or mobile app for

user-friendly security checks

● Deploy as a scalable cloud-based microservice for

enterprise-level cybersecurity applications

Conflict of interest statement

Authors declare that they do not have any conflict of

interest.

REFERENCES

[1] Ma, J., Saul, L. K., Savage, S., & Voelker, G. M. (2009). "Beyond

Blacklists: Learning to Detect Malicious Web Sites from Suspicious

URLs". In Proceedings of the 15th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD).

78 International Journal for Modern Trends in Science and Technology

[2] Sahoo, D., Liu, C., & Hoi, S. C. H. (2019). "Malicious URL Detection

using Machine Learning: A Survey". arXiv preprint

arXiv:1701.07179.

[3] Google Safe Browsing API – https://safebrowsing.google.com/

[4] VirusTotal Threat Intelligence API –

https://www.virustotal.com/gui/home/url

[5] PhishTank: Open Phishing Database –

https://www.phishtank.com/

[6] Joblib Documentation – https://joblib.readthedocs.io/en/latest/

[7] Flask Documentation – https://flask.palletsprojects.com/en/2.0.x/

