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The increasing global demand for renewable energy sources has accelerated the adoption of 

solar energy systems. However, the efficiency and performance of these systems are often 

hampered by environmental fluctuations, hardware degradation, and the absence of 

real-time monitoring. This paper proposes a cost-effective and intelligent solar power 

monitoring and efficiency tracking system that integrates the Internet of Things (IoT) with 

machine learning (ML) to enhance operational reliability and energy output. The system 

employs an Arduino Uno microcontroller interfaced with an INA219 sensor for voltage and 

current measurement, a Light Dependent Resistor (LDR) for light intensity detection, and a 

DHT11 sensor for temperature and humidity monitoring. These sensors provide critical 

parameters that influence solar panel performance. Data collected in real time is transmitted 

via the ESP8266 Wi-Fi module to cloud platforms such as ThingSpeak or Firebase for 

remote access and storage. Machine learning models, trained on historical data, analyze 

environmental and electrical parameters to predict the efficiency of solar panels and detect 

anomalies indicative of potential faults. Real-time dashboards display performance metrics, 

and automated alerts are triggered when efficiency drops below predefined thresholds. The 

system enables predictive maintenance, reduces energy loss, and supports data-driven 

decision-making. Scalable, adaptable, and low-cost, the proposed system is suitable for 

residential, commercial, and off-grid solar applications, thereby contributing to smart 

energy management and sustainable development. 
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1. INTRODUCTION 

With the rising demand for sustainable and 

eco-friendly energy solutions, solar photovoltaic (PV) 

systems have emerged as a leading choice for meeting 

global energy needs. Solar energy is abundant, clean, 

and renewable, offering a viable alternative to 

conventional fossil fuels which are not only depleting 

but also contribute significantly to environmental 

pollution. However, despite the growing deployment of 

solar power systems across residential, commercial, and 

industrial sectors, maximizing the efficiency and 

reliability of these systems remains a major challenge 

due to several external and internal factors [1], [3]. 

Solar panel efficiency is highly dependent on various 

parameters including solar irradiance, temperature, 

panel orientation, humidity, and hardware condition. In 

traditional setups, these systems are either monitored 

manually or operate without intelligent feedback 

mechanisms. This can lead to inefficiencies caused by 

shading, dust accumulation, component aging, or 

misalignment—all of which may go unnoticed for 

extended periods, reducing energy output and 

increasing operational costs [4], [6]. Moreover, systems 

that lack real-time monitoring and adaptive control 

mechanisms are prone to delayed fault detection and 

require frequent manual inspection [11]. 

In response to these limitations, many researchers 

have proposed the use of solar tracking systems that 

dynamically orient solar panels toward the sun to 

capture maximum sunlight throughout the day. Tiwari 

et al. [1] introduced a solar panel system with Maximum 

Power Point Tracking (MPPT), significantly improving 

power generation by adjusting the panel's position based 

on solar intensity. Similarly, Chowdhury et al. [3] 

compared fixed, single-axis, and dual-axis tracking 

systems, concluding that dual-axis tracking yields the 

highest efficiency across different times and seasons. 

These mechanical tracking systems are often 

controlled by microcontrollers and rely on sensors like 

Light Dependent Resistors (LDRs) to detect sunlight 

angles. Lokhande [4] and Kassem and Hamad [2] 

demonstrated the effectiveness of microcontroller-based 

tracking for automatic panel adjustment. Furthermore, 

systems developed by Kumar et al. [11] and Mishra et al. 

[13] showed how Arduino and MSP430 microcontrollers 

can be utilized to construct affordable and efficient solar 

tracking setups, thereby enhancing solar collection 

without human intervention. 

 
Fig. Smart Solar Pannel Monitoring 

Building upon these innovations, the integration of the 

Internet of Things (IoT) into solar power systems has 

added a new dimension of connectivity and intelligence. 

IoT-based systems allow for continuous monitoring of 

electrical and environmental parameters, remote data 

logging, and real-time alerts. El Hammoumi et al. [5] 

proposed an IoT-based solar tracker that effectively 

integrated environmental sensing with cloud 

communication. The use of cloud platforms such as 

ThingSpeak, Firebase, and Blynk Cloud [10] enables 

centralized data management and visualization, thereby 

simplifying system monitoring and diagnostics. 

However, a notable shortcoming in most existing 

research and commercial implementations is the absence 

of predictive intelligence. While IoT facilitates data 

collection, these systems often fail to analyze the data for 

forecasting panel efficiency or detecting anomalies. Most 

conventional solar tracking systems lack the capability to 

understand how various environmental factors correlate 

with energy output over time [6], [9]. Without predictive 

models, inefficiencies go undetected until they visibly 

affect performance, resulting in energy loss and 

increased maintenance needs. 

To address these gaps, the proposed system presents 

an IoT and machine learning-enabled solar power 

monitoring and efficiency tracking solution. The 

system architecture is centered around the Arduino Uno 

microcontroller, which interfaces with the INA219 

sensor (for current and voltage monitoring), LDR (for 

sunlight intensity), and DHT11 (for ambient temperature 

and humidity). The ESP8266 Wi-Fi module uploads 

real-time sensor data to a cloud platform like 
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ThingSpeak or Firebase, ensuring global accessibility 

and secure data storage. 

This data serves as the foundation for training 

machine learning models such as Linear Regression, 

Decision Trees, and Random Forests, which are applied 

to predict the expected output of the solar panels under 

varying environmental conditions. When real-time 

values deviate from the predicted values, the system can 

flag potential issues, thereby enabling predictive 

maintenance. This not only prevents system failure but 

also optimizes performance and increases energy yield. 

In addition, the implementation includes a real-time 

dashboard and alerting mechanism. If the system 

efficiency drops below a defined threshold, an alert is 

triggered for timely intervention. The data-driven 

insights provided by the system empower users to make 

informed decisions about cleaning schedules, hardware 

servicing, or capacity expansion. 

The proposed system is designed to be cost-effective, 

modular, and scalable, making it suitable for use in a 

wide variety of settings—from small home installations 

to large-scale solar farms. It offers a modern solution to 

long-standing problems in solar energy management 

and aligns with current efforts toward smart grids, 

sustainable energy ecosystems, and automated 

infrastructure monitoring [14], [15]. 

 

2. RELATED WORK 

The development of solar energy systems has seen 

significant advancements over the past decade, 

particularly in the areas of tracking mechanisms, 

microcontroller-based automation, and IoT-based 

monitoring. Researchers worldwide have sought to 

improve energy capture efficiency, system 

responsiveness, and user accessibility through a wide 

range of technological interventions. 

Tiwari et al. [1] proposed a sun-tracking solar panel 

system with Maximum Power Point Tracking (MPPT), 

demonstrating a substantial improvement in energy 

harvesting by ensuring that the solar panel consistently 

aligns with the sun’s position. MPPT is widely 

recognized for its ability to maximize power output, 

especially under fluctuating irradiance conditions. 

Similarly, Kassem and Hamad [2] developed a 

microcontroller-based multi-functional solar tracking 

system, which responded dynamically to solar 

movement and provided a foundation for 

programmable tracking algorithms and real-time 

adjustments. 

Chowdhury et al. [3] conducted a detailed comparative 

analysis of fixed, single-axis, and dual-axis tracking 

systems, concluding that dual-axis trackers significantly 

outperform other configurations by capturing maximum 

solar irradiance across all daylight hours. Their findings 

emphasized the importance of active tracking 

mechanisms, particularly in regions with high solar 

variability. Complementing this, Lokhande [4] 

introduced a low-cost automatic solar tracking system 

using LDRs, showcasing how simple optical sensors can 

be used to build effective solar tracking solutions 

without the need for complex mechanical or 

vision-based systems. 

The emergence of IoT (Internet of Things) has further 

revolutionized solar panel monitoring by enabling 

real-time data acquisition, cloud connectivity, and 

remote control. El Hammoumi et al. [5] explored an 

IoT-based solar tracker that utilized environmental and 

positional data to dynamically adjust panel orientation. 

Their system allowed for continuous system 

observation and wireless control, enhancing both 

reliability and accessibility. In a similar effort, Mishra et 

al. [13] designed an Arduino-based dual-axis solar 

tracker that combined LDR sensors, servo motors, and 

wireless transmission modules for improved accuracy 

and automation. 

To enhance user engagement and data transparency, 

platforms such as Blynk Cloud have been employed to 

create real-time dashboards and mobile-accessible 

control panels. These solutions allow users to monitor 

solar performance metrics like voltage, current, and 

irradiance from remote locations, with customizable 

alert systems and visualizations [10]. Such systems 

provide enhanced user interaction while also 

minimizing the need for physical maintenance checks. 

The principle of dual-axis solar tracking—which adjusts 

both azimuth and elevation angles to maintain 

perpendicularity with solar rays—has been a central 

research focus for increasing energy yield. Researchers 

like Vichare et al. [6] and topics explored via 

ScienceDirect [9] have reinforced the technical viability 

and benefits of this approach, particularly when 

integrated with weather-responsive algorithms and 

high-precision sensors. Various implementations using 

MSP430 and Arduino microcontrollers have been 
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reported in both academic [12][14] and semi-industrial 

settings [15], validating the practicality and scalability of 

such tracking systems. 

Despite these advancements, a notable limitation of 

many existing works lies in their lack of integration 

with machine learning (ML). While solar tracking 

improves energy capture and IoT ensures better data 

visibility, most systems do not analyze historical or 

real-time data to predict panel performance or detect 

system faults proactively. As a result, these systems fall 

short in enabling predictive maintenance or optimizing 

long-term energy yield through intelligent data-driven 

insights. 

Addressing this critical gap, our proposed system 

combines IoT-based sensing, real-time cloud 

integration, and ML-based efficiency prediction to 

build a holistic and intelligent solar monitoring platform. 

By learning from environmental conditions such as light 

intensity, temperature, and humidity—as well as 

electrical parameters like voltage and current—our 

system offers predictive analytics, anomaly detection, 

and performance forecasting. This makes it not only 

responsive but also proactive, setting a new benchmark 

for smart solar infrastructure. 

 

3. PROPOSED SYSTEM 

The proposed system presents a smart, integrated, and 

cost-effective solution for real-time monitoring and 

efficiency prediction of solar power systems. It harnesses 

the capabilities of IoT-enabled sensing, wireless 

communication, cloud integration, and machine 

learning to deliver a highly responsive and intelligent 

energy management platform. The system architecture is 

designed to not only collect environmental and electrical 

parameters but also to analyze them for actionable 

insights and early fault detection. 

1. Core Components and Architecture 

At the heart of the system lies the Arduino Uno 

microcontroller, chosen for its simplicity, affordability, 

and compatibility with a wide range of sensors and 

communication modules. The Arduino is interfaced with 

the following key sensors: 

• INA219 Voltage and Current Sensor: This 

high-precision sensor measures the real-time voltage 

and current supplied by the solar panel, allowing the 

system to compute instantaneous power (P = V × I). 

Accurate measurement of power output is essential 

for monitoring the panel’s efficiency. 

• LDR (Light Dependent Resistor): Used to assess 

ambient solar irradiance by detecting changes in light 

intensity. The resistance of the LDR varies inversely 

with light intensity, and this value helps estimate the 

amount of sunlight available for energy conversion. 

• DHT11 Sensor: Captures temperature (°C) and 

humidity (%) data from the surrounding 

environment. These factors significantly influence the 

photovoltaic (PV) cell performance. High 

temperatures can reduce voltage output, while high 

humidity may indicate potential risks like 

condensation or surface contamination. 

The sensor data is continuously acquired and processed 

by the Arduino. The processed data is then transmitted 

wirelessly to a cloud platform using the ESP8266 

(NodeMCU) Wi-Fi module. This enables real-time data 

upload to platforms such as ThingSpeak or Firebase, 

providing access to historical and live system 

performance from any internet-connected device. 

2. Smart Analytics and Machine Learning Integration 

What sets this system apart from traditional monitoring 

solutions is the integration of machine learning (ML) 

models into the analysis pipeline. The cloud-stored 

data—comprising light intensity, temperature, 

humidity, voltage, and current—is used to train 

predictive models that estimate solar panel output under 

various conditions. 

Machine learning algorithms such as: 

• Linear Regression – for identifying direct 

relationships between parameters and output, 

• Decision Trees – for handling non-linear 

patterns and categorical thresholds, 

• Random Forests – for improved accuracy and 

generalization through ensemble learning, 

are employed to build models that predict expected 

power output. When actual measured power deviates 

significantly from predicted values, the system flags this 

as an anomaly, suggesting inefficiency due to factors 

such as dust accumulation, shading, aging panels, or 

component malfunction. 

3. Visualization and Alert Mechanism 

To make the system user-friendly and informative: 

• A cloud dashboard displays time-series graphs 

of power output, efficiency, temperature, 

humidity, and irradiance. 
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• The user can track system performance trends, 

correlate environmental effects, and monitor 

panel degradation over time. 

• Threshold-based alerts are generated if system 

efficiency drops below a defined value or if 

environmental conditions exceed critical limits. 

These alerts can be delivered through: 

• Mobile notifications (via Firebase Cloud 

Messaging or IFTTT), 

• Email or SMS, 

• Visual indicators on the dashboard interface. 

4. Scalability and Deployment 

The proposed system is: 

• Scalable, allowing the addition of more sensors 

(e.g., dust sensors, GPS, battery monitors) or 

actuators (for solar tracking), 

• Cost-effective, utilizing off-the-shelf hardware 

components accessible to students, researchers, 

and energy providers, 

• Cloud-compatible, with flexibility to switch or 

integrate with different platforms for advanced 

analytics or IoT automation. 

By integrating IoT and machine learning into solar 

energy monitoring, this system addresses major 

limitations of traditional setups. It facilitates data-driven 

decision-making, proactive fault detection, and 

improved energy yield, making it ideal for applications 

ranging from individual homes to large-scale solar 

farms. 

 
Fig. Proposed Blockdiagram 

 

4. METHODOLOGY 

The proposed system employs an integrated 

hardware-software architecture for real-time solar panel 

monitoring and efficiency prediction. It brings together 

environmental and electrical sensing, wireless 

communication, cloud data handling, and machine 

learning to offer a comprehensive solar performance 

tracking solution. The methodology is structured across 

five core layers: data acquisition, data transmission, 

cloud integration, data analytics, and alert generation. 

1. Data Acquisition Layer 

This layer forms the foundation of the system and 

consists of a set of interconnected sensors and modules 

interfaced with the Arduino Uno microcontroller. Each 

component plays a distinct role in capturing parameters 

that influence solar panel performance. 

1.1. Voltage and Current Measurement (INA219 

Sensor) 

The INA219 sensor is a precision power monitoring 

device capable of measuring voltage (V), current (I), and 

computing power (P = V × I) with high accuracy. It is 

connected to the output of the solar panel to capture 

real-time power delivery to the load or battery. 

1.2. Light Intensity Sensing (LDR) 

An LDR (Light Dependent Resistor) is used to measure 

the intensity of sunlight. The resistance of the LDR 

decreases with increasing light levels, and this analog 

voltage change is read by the Arduino’s analog-to-digital 

converter (ADC). This value serves as a proxy for solar 

irradiance, which is critical for understanding power 

generation behavior. 

1.3. Environmental Sensing (DHT11 Sensor) 

The DHT11 sensor monitors temperature (°C) and 

humidity (%), both of which directly affect the 

photovoltaic efficiency. High temperatures can reduce 

panel voltage, while humidity may indicate potential 

condensation or dust accumulation risks. 

2. Data Transmission Layer 

After collecting sensor data, the Arduino sends the 

readings to the cloud using the ESP8266 (NodeMCU) 

module, which provides Wi-Fi connectivity. 

Protocol Used: Typically HTTP POST or MQTT for 

secure, low-latency data transfer. 

 

Frequency: Data is transmitted at intervals (e.g., every 30 

seconds to 2 minutes), which is configurable. 

Data Format: Data is structured in JSON or 

URL-encoded format with fields such as: 

json 

Copy 

Edit 

{ 

  "voltage": 18.5, 
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  "current": 0.92, 

  "power": 17.02, 

  "light_intensity": 810, 

  "temperature": 36.5, 

  "humidity": 42 

} 

3. Cloud Integration Layer 

The cloud serves as the central data repository and user 

interface hub. The system is compatible with platforms 

such as: 

3.1. ThingSpeak 

ThingSpeak is a MATLAB-powered IoT analytics 

platform: 

Automatically logs and timestamps incoming data. 

Provides real-time and historical data visualization 

(graphs, gauges). 

Allows cloud-based data processing and MATLAB 

scripts for analytics. 

3.2. Firebase (Alternative) 

Firebase Realtime Database supports: 

Real-time synchronization between devices and cloud. 

Hosting web/mobile dashboards. 

Integration with Firebase Cloud Messaging (FCM) for 

instant alerts. 

Data from the cloud is accessible via browser or mobile 

app, allowing users to monitor system status remotely. 

4. Machine Learning-Based Analytics 

One of the key innovations of the system is the use of 

machine learning models to predict the expected 

efficiency and identify anomalies in solar panel 

performance. 

4.1. Dataset Preparation 

Data logged in the cloud is periodically exported and 

used to train ML models. Each training sample includes: 

Input features: Light intensity, temperature, humidity, 

voltage, current. 

Target label: Actual power output (efficiency or 

wattage). 

4.2. Model Selection and Training 

Using Python and libraries such as scikit-learn, Pandas, 

and NumPy, the following models are trained and 

evaluated: 

Linear Regression: Establishes linear correlation between 

environmental conditions and power output. 

Decision Tree Regressor: Provides non-linear modeling 

and handles threshold-based decisions well. 

Random Forest Regressor: An ensemble of decision trees 

that improves prediction robustness and accuracy. 

Model evaluation uses metrics like Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), and R² score 

to ensure reliability before deployment. 

4.3. Efficiency Prediction and Anomaly Detection 

Once deployed, the model uses real-time sensor data to: 

Predict the expected output power. 

Compare it against the measured power from INA219. 

Calculate efficiency deviation. 

If the deviation exceeds a defined threshold (e.g., 15%), 

an anomaly is flagged, indicating possible faults such as: 

• Dust or shading on panels 

• Sensor malfunctions 

• Hardware degradation 

5. Alert System and User Interface 

To ensure real-time feedback and facilitate preventive 

maintenance, the system includes a responsive alerting 

mechanism. 

Visual Alerts: Triggered on the dashboard when 

performance deviates significantly. 

Mobile Alerts: Through Firebase Cloud Messaging 

(FCM) or IFTTT email/SMS APIs. 

User Actions: Prompted to clean panels, inspect wiring, 

or check sensor alignment. 

These proactive measures prevent prolonged 

inefficiencies and contribute to better energy yield over 

time. 

6. Scalability and Deployment 

The proposed system is designed to be: 

• Modular: Each subsystem can be upgraded 

independently (e.g., sensor replacement, ML model 

update). 

• Cost-effective: All components are low-cost and 

widely available, making it suitable for homes, 

schools, rural setups, and commercial plants. 

• Expandable: Supports additional sensors (e.g., solar 

irradiance sensor, battery monitor) and actuators 

(e.g., solar tracker motors). 

 

5. RESULTS AND DISCUSSIONS 

The proposed IoT and machine learning-enabled solar 

monitoring system was successfully implemented and 

tested in a controlled outdoor environment. The system 

demonstrated the capability to perform continuous, 
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real-time monitoring of key parameters and provide 

predictive insights on solar panel performance. 

1. Real-Time Monitoring and Data Logging 

The Arduino Uno was interfaced with the INA219 

sensor, DHT11 sensor, and LDR module. These sensors 

captured live data streams of: 

• Voltage (V) and Current (I) from the solar panel 

output 

• Ambient Temperature (°C) and Humidity (%) 

• Sunlight Intensity using the LDR 

The ESP8266 module reliably uploaded sensor data at 

fixed intervals (e.g., every 60 seconds) to the ThingSpeak 

cloud server. On the cloud dashboard, multiple graphs 

were displayed for each parameter, allowing users to 

view both historical trends and real-time behavior. For 

instance: 

• Voltage and current showed fluctuations 

corresponding to the intensity of sunlight 

throughout the day. 

• Temperature peaks during midday often 

coincided with slight drops in voltage, 

validating the inverse temperature-voltage 

relationship of photovoltaic cells. 

2. Machine Learning Model Performance 

Historical data collected over several days was used to 

train machine learning models. A Linear Regression 

model was first applied to establish a baseline prediction 

for power output using environmental variables (light 

intensity, temperature, humidity). Additionally, 

Decision Tree and Random Forest Regressor models 

were trained for improved accuracy and robustness. 

• The Random Forest model showed the lowest 

Mean Absolute Error (MAE) and highest R² 

score, making it suitable for deployment in the 

live system. 

• The models were then integrated to run 

predictions in parallel with real-time data. 

The system compared the predicted power output 

against the actual output measured via INA219. A 

significant mismatch (above a defined threshold) was 

flagged as a potential efficiency issue. 

3. Efficiency Tracking and Fault Detection 

In tests, intentional disturbances were introduced—such 

as shading parts of the panel, slightly tilting it away from 

the sun, or applying dust layers. In these scenarios: 

• The system detected a notable drop in power 

output, while the environmental conditions 

remained consistent. 

• The ML model, based on prior clean conditions, 

still predicted higher output. 

• The difference between predicted and actual 

output exceeded the threshold, triggering a 

warning alert via the dashboard. 

This predictive anomaly detection proves valuable for 

real-world applications where dust, shading, or panel 

degradation often go unnoticed in conventional systems. 

4. Dashboard and User Alerts 

The ThingSpeak dashboard allowed graphical 

visualization of all parameters, power calculations, and 

efficiency loss trends. 

In case of underperformance, the system was configured 

to send email alerts or Firebase push notifications, 

suggesting possible maintenance actions. 

This feature promotes proactive rather than reactive 

maintenance, potentially increasing energy yield and 

panel lifespan. 

5. Practical Benefits and Observations 

The system was observed to be highly responsive, 

low-latency, and easy to deploy with minimal hardware 

requirements. 

It demonstrated a cost-effective solution for small-scale 

or large-scale solar farms. 

Scalability was tested by simulating multiple sensor 

nodes. Data streams from different panels could be 

indexed and analysed concurrently. 

 

Key Observations: 

Parameter Observation 

Power Prediction 

Accuracy 

91–94% depending on the model and data 

resolution 

Alert Responsiveness Within 30–60 seconds after detecting 

deviation 

Deployment Cost Low (under ₹2500 or ~$30 for prototype 

version) 

Data Visualization Real-time graphs, historical logs on Thing 

Speak 

Cloud Dependency Stable with Thing Speak; Firebase offers 

more flexibility 

Maintenance Guidance Timely alerts helped simulate proactive 

interventions 
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Fig. Project prototype Implementation1 

 
Fig. Project prototype Implementation2 

 

Discussion 

The results clearly demonstrate that the integration of 

IoT with ML-based analytics leads to an intelligent and 

proactive solar monitoring system. Unlike conventional 

systems that only display raw data, this system derives 

insights, forecasts output, and automates alert 

mechanisms. Additionally, it is adaptable to diverse 

climates, geographies, and deployment scales. 

However, certain limitations were noted: 

• Prediction models may need retraining 

periodically due to seasonal shifts. 

• LDR sensors, while cost-effective, may have 

nonlinear responses under high irradiance. 

• The ESP8266 relies on a stable internet 

connection; offline buffer support can be 

considered for remote areas. 

These areas point to potential future improvements but 

do not hinder the system’s effectiveness in its current 

form. 

 

6. FUTURE SCOPE AND CONCLUSION 

The project is aimed at building a flexible invoicing 

system which can precisely match 

The project is aimed at building a flexible invoicing 

system which can precisely match content PDF files, 

easily match line items and tables and automate the 

entire invoicing process for any major organization. The 

system has the ability to obtain all relevant information 

from the document with 100% accuracy while ensuring 

speed and reliability. This project has a huge potential 

for further development. While the problem focuses on 

digitization of invoices, this could be extended to 

digitizing any document for processing, thereby 

removing any manual efforts, errors and management of 

document processing within companies. 
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