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The Carry Lookahead Adder (CLA) is a critical arithmetic component widely used in 

high-performance digital systems to accelerate addition operations by minimizing carry 

propagation delay. This paper presents the design and implementation of a 32-bit CLA 

using Verilog Hardware Description Language (HDL). The proposed design employs 

modular and scalable architecture, leveraging generate and propagate logic to achieve 

parallel computation of carry signals across all bits. The Verilog implementation 

demonstrates significant improvements in computational speed compared to conventional 

ripple carry adders, making it well-suited for applications in modern processors, digital 

signal processors, and hardware acceleration platforms. Functional verification and 

synthesis results confirm the efficacy and efficiency of the proposed CLA architecture, with 

favorable area-speed trade-offs for integration into Field Programmable Gate Arrays 

(FPGAs) and Application-Specific Integrated Circuits (ASICs). 

 

1. INTRODUCTION 

The Arithmetic Logic Unit (ALU) is a core component 

of virtually every digital system, serving as the 

execution engine for arithmetic and logic operations. At 

the heart of the ALU lies the binary adder, which is 

tasked with performing high-frequency addition 

operations across various computing 

platforms—including microprocessors, digital signal 

processors (DSPs), graphics processing units (GPUs), 

and application-specific integrated circuits (ASICs) [6], 

[7], [8].  

As data word lengths increase and clock frequencies 

rise, the Ripple Carry Adder (RCA)—which computes 

each carry in sequence—becomes a limiting factor due 

to its linear delay with respect to bit-width. This delay 

leads to significant performance bottlenecks in 

high-speed systems [1], [3]. To overcome this challenge, 

the Carry Lookahead Adder (CLA) was introduced. The 
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CLA employs generate and propagate logic functions to 

precompute carry signals, drastically reducing the 

overall addition latency [1], [2], [12].  

1.1 Theoretical Foundations  

The CLA architecture is built on the concepts of 

generate (G) and propagate (P) logic. For each bit 

position, the generate function (G = A & B) indicates that 

a carry will be produced, while the propagate function 

(P = A  B) determines if a carry should pass through 

[8], [9]. By evaluating these functions, carry outputs can 

be computed in parallel using Boolean equations instead 

of relying on sequential propagation. This architectural 

principle allows the delay of a CLA to grow 

logarithmically—or near-logarithmically—with the size 

of the operands, offering a substantial performance 

improvement over RCAs [1], [4], [12].  

1.2 Significance in Modern Systems  

With 32-bit and wider data paths now standard in 

modern processors, employing fast adders like the CLA 

becomes essential. Applications ranging from real-time 

signal processing to AI inference pipelines demand 

low-latency arithmetic units [5], [6], [10]. CLAs are 

extensively used in high-performance CPUs, real-time 

DSPs, and specialized ASICs where even minor 

improvements in arithmetic delay can yield notable 

system-level benefits [2], [14].  

Recent works have also explored approximate CLA 

architectures to improve energy efficiency for 

error-resilient applications such as image processing or 

neural network inference. These variants offer 

configurable trade-offs between accuracy, power, and 

speed [4], [5]. Some designs incorporate hierarchical 

structures and segmentation techniques to further 

optimize timing and logic utilization [1], [2].  

1.3 Relevance of Verilog HDL  

The design and implementation of digital circuits like 

the CLA have been revolutionized by hardware 

description languages (HDLs). Among these, Verilog 

HDL is widely adopted in both academia and industry 

for its support for modular, scalable, and synthesizable 

digital design. In CLA implementations, Verilog enables 

the creation of parameterized modules, generate loops, 

and hierarchical instantiations, simplifying the 

expansion from 8-bit to 16-bit and 32-bit architectures 

[6], [7], [11].  

These features support rapid prototyping, simulation, 

synthesis, and hardware deployment, whether on 

FPGAs or standard-cell ASICs.  

Designers can use Verilog to efficiently define full 

adders, generate-propagate blocks, and carry logic in a 

reusable and testable manner. Furthermore, Verilog 

supports integration into automated verification 

environments, enabling faster time-to-market and 

robust validation [11], [13].  

1.4 Motivations and Challenges  

While CLAs offer a substantial speed advantage, they 

come at the cost of increased logic complexity. The carry 

logic computation adds to the silicon area and dynamic 

power consumption, making it necessary to balance 

area-speed-power trade-offs during design [1], [4], [14]. 

As such, modern research has focused on designing 

adaptive, reconfigurable, and approximate CLAs that 

can be tailored to the specific requirements of diverse 

applications [4], [5], [15].  

The integration of CLA design into modern digital 

systems requires careful attention to modularity, 

verification, and synthesis constraints. Verilog plays a 

key role in supporting this design process through its 

abstraction capabilities and toolchain compatibility.  

1.5 Summary and Paper Structure  

In summary, the 32-bit Carry Lookahead Adder 

(CLA) stands as a cornerstone for high-speed arithmetic 

in advanced computing platforms. Its ability to compute 

carries in parallel using generate and propagate logic 

makes it significantly faster than traditional adders. 

Implemented in Verilog HDL, the CLA achieves 

modularity, scalability, and synthesis-friendly design 

suited for both FPGAs and ASICs.  

Figure 1 (to be inserted) illustrates the high-level 

architecture of the proposed CLA design, showing its 

modular construction and hierarchical carry 

computation approach.  
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Fig. Carry Lookahead Adder  

The remainder of this paper is organized as follows:  

Section 2: Related Work reviews the evolution of CLA 

architectures and key design trade-offs in existing 

literature. Section 3: Design Methodology presents the 

architectural approach and carry computation logic. 

Section 4: Verilog Implementation describes the 

modular coding structure of the CLA using generate 

blocks. Section 5: Simulation and Synthesis covers the 

functional verification and hardware resource analysis. 

Section 6: Results and Discussion presents performance 

metrics and comparative analysis. Section 7: Conclusion 

and Future Work summarizes key findings and outlines 

potential extensions to this work.  

II. RELATED WORK 

The Carry Lookahead Adder (CLA) has been widely 

studied due to its superior performance in reducing the 

delay associated with binary addition. Over the years, 

researchers have introduced various architectural 

enhancements and design optimizations to improve 

speed, area efficiency, and energy consumption.  

Ahmed [1] proposed a novel CLA architecture 

specifically optimized for speed using advanced 

Boolean simplifications and parallel prefix structures. 

His design demonstrates reduced propagation delay 

and improved timing closure for 32-bit and 64-bit 

adders, making it well-suited for high-performance 

systems.  

Wang and Lee [2] focused on energy-efficient CLA 

design, presenting a hybrid architecture that balances 

power and speed. Their design achieves lower power 

consumption through logic-level optimization while 

maintaining competitive delay, which is crucial for 

battery-powered and embedded systems.  

Shrivastava et al. [3] provided a comprehensive 

survey on CLA architectures, comparing them to Ripple 

Carry Adders (RCAs), Carry Skip Adders (CSAs), and 

other contemporary schemes. The study confirms the 

CLA’s advantage in large word-length scenarios and 

identifies areas for further research such as hierarchical 

CLA design and hybrid combinations.  

Kiran Kumar et al. [4] explored a reconfigurable 

approximate CLA, targeting applications where minor 

computational errors are acceptable in exchange for 

significant power and area savings. Their approach is 

beneficial in domains like multimedia processing and 

machine learning, where perfect accuracy may be traded 

off for efficiency.  

Joshi and Mane [5] introduced an adaptive and 

approximate CLA design, featuring a dynamic control 

mechanism to adjust precision levels based on 

application needs. Their architecture is particularly 

useful in error-resilient systems, offering runtime 

adaptability for power-performance optimization.  

On the implementation side, several works have 

demonstrated CLA designs in Verilog HDL. Sandeep et 

al. [6] presented the development of a 32-bit ALU using 

Verilog, where the CLA is integrated as a high-speed 

arithmetic module. Similarly, Savaliya and Rudani [7] 

designed and simulated a 32-bit floating-point ALU, 

emphasizing modularity and simulation validation 

using Verilog constructs.  

Theoretical underpinnings of the CLA are well 

documented in foundational texts such as Digital Logic 

and Computer Design by Mano [8], and The Art of 

Electronics by Horowitz and Hill [9]. These works 

establish the Boolean logic and circuit behavior used to 

derive the generate and propagate expressions 

foundational to CLA logic.  

Graf [10] and Nandland’s online HDL resources [11] 

offer practical insights into implementing CLA 

architectures using Verilog and VHDL. Nandland, in 

particular, provides modular design strategies and 

simulation workflows for understanding carry 

lookahead behavior.  

Educational platforms like IIT Kharagpur’s Virtual 

Lab [12] and coursework from the University of Florida 
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[13] provide instructional material on CLA theory and 

implementation. These resources aid in academic 

understanding and practical lab-based exploration.  

Sachdeva [14] explored CMOS-based CLA design 

techniques, comparing different adder types in terms of 

area, delay, and power in a CMOS technology node. His 

results reinforce CLA’s superior speed performance, 

while also acknowledging the area overhead.  

Sivakumar and Raj [15] compared multiple full adder 

architectures within 32-bit adders, including CLA-based 

implementations. Their findings indicate that CLAs 

consistently offer better performance in terms of delay 

but require careful design for area optimization.  

Despite the significant body of work in CLA research, 

there remains a demand for modular, synthesizable 

CLA designs that are not only fast and efficient but also 

easy to scale and integrate into broader digital systems. 

This paper addresses that gap by presenting a 

parameterized, 32-bit CLA architecture implemented in 

Verilog HDL, suitable for both academic and industrial 

FPGA/ASIC workflows.  

 

III. METHODOLOGY  

This section explains the internal structure, logic design, 

and architectural decisions made during the 

development of the 32-bit Carry Lookahead Adder 

(CLA) using Verilog HDL. The focus is on building a 

modular, scalable, and synthesizable system using 

generate-propagate logic and full-adder submodules. 

3.1 Architectural Overview  

The 32-bit CLA is structured as a hierarchical and 

modular design, consisting of two key functional blocks 

for each bit:  

• Full Adder Logic: Computes the sum (S) for each 

bit using input bits A[i], B[i], and carry-in C[i].  

• Generate-Propagate (GP) Logic: Computes the 

generate (G), propagate (P), and carry-out (C[i+1]) 

signals required for CLA operation.  

The top-level CLA module accepts two 32-bit binary 

operands A and B, along with an initial carry-in (Ci). It 

outputs the 32-bit sum S, final carry-out Co, and three 

additional signals:  

• PG (propagate group),  

• GG (generate group),  

• CG (carry group), which facilitate block-level 

propagation.  

The complete 32-bit addition is executed in parallel 

using Verilog generate constructs, allowing for flexible 

scaling of bit-widths.  

3.2 Generate and Propagate Logic The CLA relies on two 

essential equations to compute carries:  

𝐺𝑖 = 𝐴𝑖 ∗ 𝐵𝑖 (Generate)  

𝑃𝑖 = 𝐴𝑖⨁𝐵𝑖 (Propagate)  

𝐶𝑖+1 = 𝐺𝑖 + (𝑃𝑖 ∗ 𝐶𝑖)  

By applying these equations recursively across all bits 

from 0 to 31, the CLA calculates each carry bit in parallel 

rather than sequentially, thus significantly reducing the 

delay.  

3.3 Modular Design Using Verilog  

The architecture is split into three Verilog modules:  

1. CLA: Top-level module implementing the 32-bit 

structure using generate loops.  

2. full_adder_gp: Computes the sum of each bit 

using XOR gates.  

3. GP: Calculates the G, P, and C[i+1] signals. Each 

module is written using structural coding style 

for clarity, reusability, and synthesis 

optimization. Parameters are used to make the 

design scalable (e.g., parameter N = 32). 3.4 

Scalability and Hierarchical Design  

The design follows a bottom-up modular hierarchy. 

Each bit of the adder is built using a combination of the 

full_adder_gp and GP modules. A Verilog generate 

block is used to instantiate these modules 32 times in a 

loop, corresponding to the 32-bit inputs.  

This approach ensures:  

• Code compactness and clarity.  

• Easy modification for N-bit adders.  

• Compatibility with FPGA synthesis tools like 

Xilinx Vivado or Intel Quartus.  

3.5 Design Trade-offs  

While CLA improves performance significantly over 

Ripple Carry Adders, it introduces complexity due to 

the parallel carry generation network. This may result in 

increased usage of LUTs (Look-Up Tables) and 

interconnects in FPGAs or silicon area in ASICs. 

However, due to Verilog’s structural clarity, such 

designs remain manageable and optimizable.  
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 Fig. 4-bit Adder  

  

IV. VERILOG IMPLEMENTATION  

 The 32-bit Carry Lookahead Adder (CLA) is 

implemented in Verilog using a modular and 

hierarchical approach to facilitate scalability, readability, 

and efficient hardware synthesis. The implementation 

consists of three main modules: the top-level CLA 

module, the full adder module that computes the sum 

for each bit, and the generate/propagate (GP) logic 

module responsible for calculating carry signals.  

• Top-Level CLA Module  

The CLA module is parameterized to support a 32-bit 

wide input by default but can be easily adapted for 

other widths. It takes two N-bit inputs, A and B, along 

with a carry-in (Ci), and produces an N-bit sum output 

(S) and a carry-out (Co). Internally, it declares arrays to 

hold the propagate (P) and generate (G) signals for each 

bit, as well as the carry signals (C) for all bit positions.  

  Using a Verilog generate-for loop, instances of the full 

adder and GP modules are created for each bit.  

These modules compute the sum bit and carry-related 

signals concurrently, enabling parallel carry 

propagation. The module also computes block-wide 

signals such as block propagate (PG) and block generate 

(GG), which can be used for hierarchical CLA 

architectures.  

• Full Adder Module  

The full adder computes the sum bit for a single bit 

position using simple XOR operations on the inputs A, 

B, and the carry-in Ci. This module outputs the sum bit 

S. Although the carry-out is typically part of a full 

adder, in this design, carry computation is offloaded to 

the GP module to facilitate carry lookahead logic.  

• Generate/Propagate (GP) Module This module 

calculates the generate (G) and propagate (P) 

signals for each bit, essential for the carry 

lookahead mechanism:  

• Generate (G) is asserted if both input bits are ‘1’, 

indicating a carry will be produced regardless 

of the incoming carry.  

• Propagate (P) is asserted if either input bit is ‘1’ 

but not both, indicating the carry-in will 

propagate through this bit.  

The carry-out for the bit is computed as the logical OR of 

the generate signal and the AND of the propagate signal 

with the carry-in, following the carry lookahead 

equation.  

• Summary  

The modular design using Verilog’s parameterization 

and generate constructs enables efficient creation of a 

scalable, fast CLA. It separates concerns between 

individual bit sum calculation and the carry 

computation logic, improving maintainability and 

facilitating reuse in hierarchical designs.  

This approach aligns with best practices for HDL design 

and has been successfully synthesized on FPGA and 

ASIC platforms, demonstrating improvements in delay 

and resource usage compared to simpler adders.  

  

V. SIMULATION AND VERIFICATION  

 To ensure the functional correctness and performance of 

the 32-bit Carry Lookahead Adder (CLA) design, 

comprehensive simulation and verification were 

conducted using industry-standard tools such as 

ModelSim and Vivado. A dedicated testbench was 

developed to validate the behavior of the CLA module 

across a wide range of input combinations, including 

edge cases like maximum values, zero inputs, and 

varying carry-in conditions.  

• Testbench Design  

The testbench generates random as well as deterministic 

test vectors for the 32-bit inputs A and B, systematically 

applying all possible carry-in values (0 and 1). It 

monitors the module outputs—sum (S) and carry-out 

(Co)—and compares them against expected results 

calculated using built-in arithmetic operators to verify 

accuracy.  

• Functional Simulation  

The simulation waveforms demonstrate correct 

propagation of carry bits and accurate sum computation 

across the full 32-bit width. The carry signals generated 
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internally confirm the parallel and hierarchical carry 

lookahead logic functioning as designed. Timing checks 

within the simulator validate that the carry signals are 

resolved faster compared to ripple carry approaches, 

showing reduced propagation delays.  

• Corner Case Verification  

Special attention is given to corner cases such as:  

• Adding maximum operands (all bits set) with 

carry-in = 1 to test carry overflow and 

propagation.  

• Adding zero operands to verify zero 

propagation.  

• Transition scenarios where carry toggles at 

specific bit positions.  

The CLA maintains accurate and stable operation under 

all test conditions, confirming robustness.  

• Timing and Delay Analysis Post-simulation 

timing reports indicate reduced critical path 

delay attributable to the parallel carry 

computation, as opposed to sequential carry 

ripple in traditional adders. These timing 

improvements imply higher achievable clock 

frequencies in practical implementations.  

  

  
Fig. Simulation Output  

  
Fig. Timing Report  

 
Fig. RTL Schematic  

 
Fig. RTL Implementation 

• Summary  

The simulation and verification phase confirms the 

correctness, stability, and timing advantages of the 

32-bit CLA implementation. Rigorous testing under 

varied input patterns and boundary conditions ensures 

reliability for integration into larger digital systems.  

  

VI. FUTURE SCOPE AND CONCLUSION  

 This paper presents the design and implementation of a 

32-bit Carry Lookahead Adder (CLA) using Verilog 

HDL, demonstrating significant improvement in 

addition speed by minimizing carry propagation delay 

compared to traditional ripple carry adders. The 

modular and hierarchical approach leveraging generate 

and propagate signals enables fast parallel computation 

of carry bits, resulting in enhanced performance suitable 

for high-speed arithmetic units in modern processors 

and digital systems. Simulation and synthesis results 

confirm that the CLA achieves lower latency and 

https://www.researchtrend.net/ijeece/pdf/3%20POORNIMA%20SHRIVASTAVA%20817.pdf
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acceptable hardware overhead, making it an effective 

choice for integration on FPGA and ASIC platforms [56].  

For future work, the design can be further extended and 

optimized by exploring approximate CLA architectures 

that trade off small computational errors for power and 

area savings, which is crucial in error-tolerant 

applications such as machine learning accelerators. 

Additionally, integrating pipelining and applying 

advanced low-power techniques such as adiabatic logic 

or clock gating could further enhance the energy 

efficiency of the adder [38]. Expanding the design for 

floating-point arithmetic units compliant with IEEE 

standards or combining CLA with other adder types like 

carry select or carry skip adders in hybrid architectures 

may yield balanced improvements across delay, area, 

and power. Finally, investigating asynchronous or 

self-timed CLA designs might offer benefits in 

robustness and timing flexibility in future high-speed 

and low-power digital systems. 
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