

251 International Journal for Modern Trends in Science and Technology

As per UGC guidelines an electronic bar code is provided to secure your paper

International Journal for Modern Trends in Science and Technology

Volume 11, Issue 07, pages 251-257.
ISSN: 2455-3778 online

Available online at: http://www.ijmtst.com/vol11issue07.html
DOI: https://doi.org/10.5281/zenodo.16480669

Design and Implementation of a 32-bit Carry Lookahead

Adder (CLA) in Verilog

G Sravya1 | K Anjaneyulu2

1PG Scholar, Department of ECE, KITS AKSHAR Institute of Technology, Yanamadala, Guntur, AP, India.
2Professor, Department of ECE, KITS AKSHAR Institute of Technology, Yanamadala, Guntur, AP, India.

To Cite this Article

G Sravya & K Anjaneyulu (2025). Design and Implementation of a 32-bit Carry Lookahead Adder (CLA) in Verilog.

International Journal for Modern Trends in Science and Technology, 11(07), 251-257.

https://doi.org/10.5281/zenodo.16480669

Article Info

Received: 21 June 2025; Accepted: 17 July 2025.; Published: 26 July 2025.

Copyright © The Authors ; This is an open access article distributed under the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

KEYWORDS ABSTRACT

Carry Lookahead Adder (CLA),

32-bit Adder,

Verilog,

Digital Arithmetic,

Parallel Computation,

FPGA,

ASIC,

Hardware Design,

High-Speed Addition,

Generate and Propagate Signals.

The Carry Lookahead Adder (CLA) is a critical arithmetic component widely used in

high-performance digital systems to accelerate addition operations by minimizing carry

propagation delay. This paper presents the design and implementation of a 32-bit CLA

using Verilog Hardware Description Language (HDL). The proposed design employs

modular and scalable architecture, leveraging generate and propagate logic to achieve

parallel computation of carry signals across all bits. The Verilog implementation

demonstrates significant improvements in computational speed compared to conventional

ripple carry adders, making it well-suited for applications in modern processors, digital

signal processors, and hardware acceleration platforms. Functional verification and

synthesis results confirm the efficacy and efficiency of the proposed CLA architecture, with

favorable area-speed trade-offs for integration into Field Programmable Gate Arrays

(FPGAs) and Application-Specific Integrated Circuits (ASICs).

1. INTRODUCTION

The Arithmetic Logic Unit (ALU) is a core component

of virtually every digital system, serving as the

execution engine for arithmetic and logic operations. At

the heart of the ALU lies the binary adder, which is

tasked with performing high-frequency addition

operations across various computing

platforms—including microprocessors, digital signal

processors (DSPs), graphics processing units (GPUs),

and application-specific integrated circuits (ASICs) [6],

[7], [8].

As data word lengths increase and clock frequencies

rise, the Ripple Carry Adder (RCA)—which computes

each carry in sequence—becomes a limiting factor due

to its linear delay with respect to bit-width. This delay

leads to significant performance bottlenecks in

high-speed systems [1], [3]. To overcome this challenge,

the Carry Lookahead Adder (CLA) was introduced. The

http://www.ijmtst.com/vol11issue07.html
https://doi.org/10.5281/zenodo.16480669
https://doi.org/10.5281/zenodo.16480669
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

252 International Journal for Modern Trends in Science and Technology

CLA employs generate and propagate logic functions to

precompute carry signals, drastically reducing the

overall addition latency [1], [2], [12].

1.1 Theoretical Foundations

The CLA architecture is built on the concepts of

generate (G) and propagate (P) logic. For each bit

position, the generate function (G = A & B) indicates that

a carry will be produced, while the propagate function

(P = A B) determines if a carry should pass through

[8], [9]. By evaluating these functions, carry outputs can

be computed in parallel using Boolean equations instead

of relying on sequential propagation. This architectural

principle allows the delay of a CLA to grow

logarithmically—or near-logarithmically—with the size

of the operands, offering a substantial performance

improvement over RCAs [1], [4], [12].

1.2 Significance in Modern Systems

With 32-bit and wider data paths now standard in

modern processors, employing fast adders like the CLA

becomes essential. Applications ranging from real-time

signal processing to AI inference pipelines demand

low-latency arithmetic units [5], [6], [10]. CLAs are

extensively used in high-performance CPUs, real-time

DSPs, and specialized ASICs where even minor

improvements in arithmetic delay can yield notable

system-level benefits [2], [14].

Recent works have also explored approximate CLA

architectures to improve energy efficiency for

error-resilient applications such as image processing or

neural network inference. These variants offer

configurable trade-offs between accuracy, power, and

speed [4], [5]. Some designs incorporate hierarchical

structures and segmentation techniques to further

optimize timing and logic utilization [1], [2].

1.3 Relevance of Verilog HDL

The design and implementation of digital circuits like

the CLA have been revolutionized by hardware

description languages (HDLs). Among these, Verilog

HDL is widely adopted in both academia and industry

for its support for modular, scalable, and synthesizable

digital design. In CLA implementations, Verilog enables

the creation of parameterized modules, generate loops,

and hierarchical instantiations, simplifying the

expansion from 8-bit to 16-bit and 32-bit architectures

[6], [7], [11].

These features support rapid prototyping, simulation,

synthesis, and hardware deployment, whether on

FPGAs or standard-cell ASICs.

Designers can use Verilog to efficiently define full

adders, generate-propagate blocks, and carry logic in a

reusable and testable manner. Furthermore, Verilog

supports integration into automated verification

environments, enabling faster time-to-market and

robust validation [11], [13].

1.4 Motivations and Challenges

While CLAs offer a substantial speed advantage, they

come at the cost of increased logic complexity. The carry

logic computation adds to the silicon area and dynamic

power consumption, making it necessary to balance

area-speed-power trade-offs during design [1], [4], [14].

As such, modern research has focused on designing

adaptive, reconfigurable, and approximate CLAs that

can be tailored to the specific requirements of diverse

applications [4], [5], [15].

The integration of CLA design into modern digital

systems requires careful attention to modularity,

verification, and synthesis constraints. Verilog plays a

key role in supporting this design process through its

abstraction capabilities and toolchain compatibility.

1.5 Summary and Paper Structure

In summary, the 32-bit Carry Lookahead Adder

(CLA) stands as a cornerstone for high-speed arithmetic

in advanced computing platforms. Its ability to compute

carries in parallel using generate and propagate logic

makes it significantly faster than traditional adders.

Implemented in Verilog HDL, the CLA achieves

modularity, scalability, and synthesis-friendly design

suited for both FPGAs and ASICs.

Figure 1 (to be inserted) illustrates the high-level

architecture of the proposed CLA design, showing its

modular construction and hierarchical carry

computation approach.

253 International Journal for Modern Trends in Science and Technology

Fig. Carry Lookahead Adder

The remainder of this paper is organized as follows:

Section 2: Related Work reviews the evolution of CLA

architectures and key design trade-offs in existing

literature. Section 3: Design Methodology presents the

architectural approach and carry computation logic.

Section 4: Verilog Implementation describes the

modular coding structure of the CLA using generate

blocks. Section 5: Simulation and Synthesis covers the

functional verification and hardware resource analysis.

Section 6: Results and Discussion presents performance

metrics and comparative analysis. Section 7: Conclusion

and Future Work summarizes key findings and outlines

potential extensions to this work.

II. RELATED WORK

The Carry Lookahead Adder (CLA) has been widely

studied due to its superior performance in reducing the

delay associated with binary addition. Over the years,

researchers have introduced various architectural

enhancements and design optimizations to improve

speed, area efficiency, and energy consumption.

Ahmed [1] proposed a novel CLA architecture

specifically optimized for speed using advanced

Boolean simplifications and parallel prefix structures.

His design demonstrates reduced propagation delay

and improved timing closure for 32-bit and 64-bit

adders, making it well-suited for high-performance

systems.

Wang and Lee [2] focused on energy-efficient CLA

design, presenting a hybrid architecture that balances

power and speed. Their design achieves lower power

consumption through logic-level optimization while

maintaining competitive delay, which is crucial for

battery-powered and embedded systems.

Shrivastava et al. [3] provided a comprehensive

survey on CLA architectures, comparing them to Ripple

Carry Adders (RCAs), Carry Skip Adders (CSAs), and

other contemporary schemes. The study confirms the

CLA’s advantage in large word-length scenarios and

identifies areas for further research such as hierarchical

CLA design and hybrid combinations.

Kiran Kumar et al. [4] explored a reconfigurable

approximate CLA, targeting applications where minor

computational errors are acceptable in exchange for

significant power and area savings. Their approach is

beneficial in domains like multimedia processing and

machine learning, where perfect accuracy may be traded

off for efficiency.

Joshi and Mane [5] introduced an adaptive and

approximate CLA design, featuring a dynamic control

mechanism to adjust precision levels based on

application needs. Their architecture is particularly

useful in error-resilient systems, offering runtime

adaptability for power-performance optimization.

On the implementation side, several works have

demonstrated CLA designs in Verilog HDL. Sandeep et

al. [6] presented the development of a 32-bit ALU using

Verilog, where the CLA is integrated as a high-speed

arithmetic module. Similarly, Savaliya and Rudani [7]

designed and simulated a 32-bit floating-point ALU,

emphasizing modularity and simulation validation

using Verilog constructs.

Theoretical underpinnings of the CLA are well

documented in foundational texts such as Digital Logic

and Computer Design by Mano [8], and The Art of

Electronics by Horowitz and Hill [9]. These works

establish the Boolean logic and circuit behavior used to

derive the generate and propagate expressions

foundational to CLA logic.

Graf [10] and Nandland’s online HDL resources [11]

offer practical insights into implementing CLA

architectures using Verilog and VHDL. Nandland, in

particular, provides modular design strategies and

simulation workflows for understanding carry

lookahead behavior.

Educational platforms like IIT Kharagpur’s Virtual

Lab [12] and coursework from the University of Florida

254 International Journal for Modern Trends in Science and Technology

[13] provide instructional material on CLA theory and

implementation. These resources aid in academic

understanding and practical lab-based exploration.

Sachdeva [14] explored CMOS-based CLA design

techniques, comparing different adder types in terms of

area, delay, and power in a CMOS technology node. His

results reinforce CLA’s superior speed performance,

while also acknowledging the area overhead.

Sivakumar and Raj [15] compared multiple full adder

architectures within 32-bit adders, including CLA-based

implementations. Their findings indicate that CLAs

consistently offer better performance in terms of delay

but require careful design for area optimization.

Despite the significant body of work in CLA research,

there remains a demand for modular, synthesizable

CLA designs that are not only fast and efficient but also

easy to scale and integrate into broader digital systems.

This paper addresses that gap by presenting a

parameterized, 32-bit CLA architecture implemented in

Verilog HDL, suitable for both academic and industrial

FPGA/ASIC workflows.

III. METHODOLOGY

This section explains the internal structure, logic design,

and architectural decisions made during the

development of the 32-bit Carry Lookahead Adder

(CLA) using Verilog HDL. The focus is on building a

modular, scalable, and synthesizable system using

generate-propagate logic and full-adder submodules.

3.1 Architectural Overview

The 32-bit CLA is structured as a hierarchical and

modular design, consisting of two key functional blocks

for each bit:

• Full Adder Logic: Computes the sum (S) for each

bit using input bits A[i], B[i], and carry-in C[i].

• Generate-Propagate (GP) Logic: Computes the

generate (G), propagate (P), and carry-out (C[i+1])

signals required for CLA operation.

The top-level CLA module accepts two 32-bit binary

operands A and B, along with an initial carry-in (Ci). It

outputs the 32-bit sum S, final carry-out Co, and three

additional signals:

• PG (propagate group),

• GG (generate group),

• CG (carry group), which facilitate block-level

propagation.

The complete 32-bit addition is executed in parallel

using Verilog generate constructs, allowing for flexible

scaling of bit-widths.

3.2 Generate and Propagate Logic The CLA relies on two

essential equations to compute carries:

𝐺𝑖 = 𝐴𝑖 ∗ 𝐵𝑖 (Generate)

𝑃𝑖 = 𝐴𝑖⨁𝐵𝑖 (Propagate)

𝐶𝑖+1 = 𝐺𝑖 + (𝑃𝑖 ∗ 𝐶𝑖)

By applying these equations recursively across all bits

from 0 to 31, the CLA calculates each carry bit in parallel

rather than sequentially, thus significantly reducing the

delay.

3.3 Modular Design Using Verilog

The architecture is split into three Verilog modules:

1. CLA: Top-level module implementing the 32-bit

structure using generate loops.

2. full_adder_gp: Computes the sum of each bit

using XOR gates.

3. GP: Calculates the G, P, and C[i+1] signals. Each

module is written using structural coding style

for clarity, reusability, and synthesis

optimization. Parameters are used to make the

design scalable (e.g., parameter N = 32). 3.4

Scalability and Hierarchical Design

The design follows a bottom-up modular hierarchy.

Each bit of the adder is built using a combination of the

full_adder_gp and GP modules. A Verilog generate

block is used to instantiate these modules 32 times in a

loop, corresponding to the 32-bit inputs.

This approach ensures:

• Code compactness and clarity.

• Easy modification for N-bit adders.

• Compatibility with FPGA synthesis tools like

Xilinx Vivado or Intel Quartus.

3.5 Design Trade-offs

While CLA improves performance significantly over

Ripple Carry Adders, it introduces complexity due to

the parallel carry generation network. This may result in

increased usage of LUTs (Look-Up Tables) and

interconnects in FPGAs or silicon area in ASICs.

However, due to Verilog’s structural clarity, such

designs remain manageable and optimizable.

255 International Journal for Modern Trends in Science and Technology

 Fig. 4-bit Adder

IV. VERILOG IMPLEMENTATION

 The 32-bit Carry Lookahead Adder (CLA) is

implemented in Verilog using a modular and

hierarchical approach to facilitate scalability, readability,

and efficient hardware synthesis. The implementation

consists of three main modules: the top-level CLA

module, the full adder module that computes the sum

for each bit, and the generate/propagate (GP) logic

module responsible for calculating carry signals.

• Top-Level CLA Module

The CLA module is parameterized to support a 32-bit

wide input by default but can be easily adapted for

other widths. It takes two N-bit inputs, A and B, along

with a carry-in (Ci), and produces an N-bit sum output

(S) and a carry-out (Co). Internally, it declares arrays to

hold the propagate (P) and generate (G) signals for each

bit, as well as the carry signals (C) for all bit positions.

 Using a Verilog generate-for loop, instances of the full

adder and GP modules are created for each bit.

These modules compute the sum bit and carry-related

signals concurrently, enabling parallel carry

propagation. The module also computes block-wide

signals such as block propagate (PG) and block generate

(GG), which can be used for hierarchical CLA

architectures.

• Full Adder Module

The full adder computes the sum bit for a single bit

position using simple XOR operations on the inputs A,

B, and the carry-in Ci. This module outputs the sum bit

S. Although the carry-out is typically part of a full

adder, in this design, carry computation is offloaded to

the GP module to facilitate carry lookahead logic.

• Generate/Propagate (GP) Module This module

calculates the generate (G) and propagate (P)

signals for each bit, essential for the carry

lookahead mechanism:

• Generate (G) is asserted if both input bits are ‘1’,

indicating a carry will be produced regardless

of the incoming carry.

• Propagate (P) is asserted if either input bit is ‘1’

but not both, indicating the carry-in will

propagate through this bit.

The carry-out for the bit is computed as the logical OR of

the generate signal and the AND of the propagate signal

with the carry-in, following the carry lookahead

equation.

• Summary

The modular design using Verilog’s parameterization

and generate constructs enables efficient creation of a

scalable, fast CLA. It separates concerns between

individual bit sum calculation and the carry

computation logic, improving maintainability and

facilitating reuse in hierarchical designs.

This approach aligns with best practices for HDL design

and has been successfully synthesized on FPGA and

ASIC platforms, demonstrating improvements in delay

and resource usage compared to simpler adders.

V. SIMULATION AND VERIFICATION

 To ensure the functional correctness and performance of

the 32-bit Carry Lookahead Adder (CLA) design,

comprehensive simulation and verification were

conducted using industry-standard tools such as

ModelSim and Vivado. A dedicated testbench was

developed to validate the behavior of the CLA module

across a wide range of input combinations, including

edge cases like maximum values, zero inputs, and

varying carry-in conditions.

• Testbench Design

The testbench generates random as well as deterministic

test vectors for the 32-bit inputs A and B, systematically

applying all possible carry-in values (0 and 1). It

monitors the module outputs—sum (S) and carry-out

(Co)—and compares them against expected results

calculated using built-in arithmetic operators to verify

accuracy.

• Functional Simulation

The simulation waveforms demonstrate correct

propagation of carry bits and accurate sum computation

across the full 32-bit width. The carry signals generated

256 International Journal for Modern Trends in Science and Technology

internally confirm the parallel and hierarchical carry

lookahead logic functioning as designed. Timing checks

within the simulator validate that the carry signals are

resolved faster compared to ripple carry approaches,

showing reduced propagation delays.

• Corner Case Verification

Special attention is given to corner cases such as:

• Adding maximum operands (all bits set) with

carry-in = 1 to test carry overflow and

propagation.

• Adding zero operands to verify zero

propagation.

• Transition scenarios where carry toggles at

specific bit positions.

The CLA maintains accurate and stable operation under

all test conditions, confirming robustness.

• Timing and Delay Analysis Post-simulation

timing reports indicate reduced critical path

delay attributable to the parallel carry

computation, as opposed to sequential carry

ripple in traditional adders. These timing

improvements imply higher achievable clock

frequencies in practical implementations.

Fig. Simulation Output

Fig. Timing Report

Fig. RTL Schematic

Fig. RTL Implementation

• Summary

The simulation and verification phase confirms the

correctness, stability, and timing advantages of the

32-bit CLA implementation. Rigorous testing under

varied input patterns and boundary conditions ensures

reliability for integration into larger digital systems.

VI. FUTURE SCOPE AND CONCLUSION

 This paper presents the design and implementation of a

32-bit Carry Lookahead Adder (CLA) using Verilog

HDL, demonstrating significant improvement in

addition speed by minimizing carry propagation delay

compared to traditional ripple carry adders. The

modular and hierarchical approach leveraging generate

and propagate signals enables fast parallel computation

of carry bits, resulting in enhanced performance suitable

for high-speed arithmetic units in modern processors

and digital systems. Simulation and synthesis results

confirm that the CLA achieves lower latency and

https://www.researchtrend.net/ijeece/pdf/3%20POORNIMA%20SHRIVASTAVA%20817.pdf

257 International Journal for Modern Trends in Science and Technology

acceptable hardware overhead, making it an effective

choice for integration on FPGA and ASIC platforms [56].

For future work, the design can be further extended and

optimized by exploring approximate CLA architectures

that trade off small computational errors for power and

area savings, which is crucial in error-tolerant

applications such as machine learning accelerators.

Additionally, integrating pipelining and applying

advanced low-power techniques such as adiabatic logic

or clock gating could further enhance the energy

efficiency of the adder [38]. Expanding the design for

floating-point arithmetic units compliant with IEEE

standards or combining CLA with other adder types like

carry select or carry skip adders in hybrid architectures

may yield balanced improvements across delay, area,

and power. Finally, investigating asynchronous or

self-timed CLA designs might offer benefits in

robustness and timing flexibility in future high-speed

and low-power digital systems.

Conflict of interest statement

Authors declare that they do not have any conflict of

interest.

REFERENCES

[1] S. Ahmed, "A New Carry Look-Ahead Adder Architecture

Optimized for Speed," Electronics, vol. 13, no. 18, 2024, pp. 1-18,

doi: 10.3390/electronics13183668.

[2] P. Wang and Y. Lee, "High-Speed and Energy-Efficient Carry

Look-Ahead Adder," Electronics, vol. 12, no. 3, Mar. 2023, pp. 1-16,

doi: 10.3390/electronics1203046.

[3] P. Shrivastava, B. Yadav, and B. Chourasia, "Survey on Carry Look

Ahead Adder," International Journal on Emerging Technologies in

Computer Engineering, vol. 5, no. 1, pp. 15-20, 2016.

[4] E. Kiran Kumar, M. Aditya, R. S. Ernest Ravindran, A. Sravani, D.

Meenakshi, and R. V. Manoj, "Design and Analysis of Carry

Look-Ahead Adder with Reconfigurable Approximation,"

International Journal of Emerging Trends in Engineering Research,

vol. 8, no. 7, pp. 3045–3048, 2020, doi:

10.30534/ijeter/2020/27872020.

[5] A. Joshi and P. Mane, "Novel Approximate Adaptive Carry

Lookahead Adder for Error Resilient Applications with Generic

Method for Error Analysis," Scientific Reports, vol. 15, Article

 19215, 2025, doi: 10.1038/s41598-025-03865-0.

[6] D. Sandeep, A. Ugadi, P. Rajkumar, P. Pavankalyan, and D.

Vikranth, "32-Bit Arithmetic Logic Unit Development Using

Verilog HDL: Design and Implementation," International Journal

of Creative Research Thoughts, vol. 12, no. 5, pp. 1-7, 2025.

[7] Y. Savaliya and J. Rudani, "Design and Simulation of 32-Bit

Floating Point Arithmetic Logic Unit Using Verilog HDL,"

International Research Journal of Engineering and Technology,

vol. 7, no. 12, Dec. 2020, pp. 1471-1475.

[8] M. M. Mano, "Digital Logic and Computer Design," Prentice Hall,

1979.

[9] P. Horowitz and W. Hill, "The Art of Electronics," Cambridge

University Press, 1989.

[10] R. F. Graf, "Modern Dictionary of Electronics," Newnes, 1999.

[11] "Carry Lookahead Adder in VHDL and Verilog," Nandland, 2022.

[12] C. Mandal and D. Ghosh, "Design of Carry Lookahead Adders," IIT

Kharagpur, Computer Organization and Architecture Virtual Lab,

2010.

[13] "Lab 3: Ripple-Carry and Carry-Lookahead Adders," University of

Florida, Department of Electrical & Computer Engineering, Spring

2021.

[14] A. Sachdeva, "Design and Analysis of Carry Look Ahead Adder

Using CMOS Technique," International Journal of Engineering

Trends and Technology, vol. 47, no. 4, Aug. 2017.

[15] S. Sivakumar and A. Raj, "Implementation of 32-Bit Adders Using

Different Full Adders," International Journal of Engineering

Research & Technology, vol. 9, no. 10, Oct. 2020, pp. 158-163.

https://www.ijert.org/research/implementation-of-32-bit-adders-using-different-full-adders-IJERTV9IS100070.pdf
https://ijeee.in/wp-content/uploads/2014/06/IJEEE-205-209.pdf
https://ijeee.in/wp-content/uploads/2014/06/IJEEE-205-209.pdf
http://jctjournals.com/July_2023/10_Vol_12_issue_7.pdf
https://www.irjet.net/archives/V6/i10/IRJET-V6I10241.pdf
https://www.irjet.net/archives/V6/i10/IRJET-V6I10241.pdf

