International Journal for Modern Trends in Science and Technology Volume 11, Issue 04, pages 1028-1034.

ISSN: 2455-3778 online

Available online at: http://www.ijmtst.com/vol11issue04.html

DOI: https://doi.org/10.5281/zenodo.15313809

Flood and Traffic Control with Renewable Energy

Ch. Kamala Kumari¹, Y. Sai Nishitha², P. Navya Sri², D. Pujitha², T. Sahitya²

¹Assistant Professor, Department of Electronics and Communication Engineering, Vijaya Institute of Technology for Women, Enikepadu ,Vijayawada, India.

²Department of Electronics and Communication Engineering, Vijaya Institute of Technology for Women, Enikepadu ,Vijayawada, India.

To Cite this Article

Ch. Kamala Kumari, Y. Sai Nishitha, P. Navya Sri, D. Pujitha, T. Sahitya (2025). Flood and Traffic Control with Renewable Energy. International Journal for Modern Trends in Science and Technology, 11(04), 1028-1034. https://doi.org/10.5281/zenodo.15313809 onal Journal

Article Info

Received: 17 March 2025; Accepted: 21 April 2025; Published: 25 April 2025.

Copyright © The Authors; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

KEYWORDS

ABSTRACT

The "Internet of Things-based Smart Flood Forecasting and Early Warning System" is an innovative solution designed to improve flood management and early warning in flood-prone regions. It utilizes multiple sensors, including a DHT11 sensor for monitoring temperature and humidity, a soil moisture sensor to measure ground moisture levels, and a raindrop sensor to detect rainfall intensity. These sensors continuously gather environmental data, allowing the system to assess flood risks in real time.

To ensure timely alerts, the system is equipped with GSM/GPRS connectivity, enabling swift communication. When any sensor detects conditions surpassing predefined thresholds—such as excessive rainfall or high soil moisture—the system promptly triggers an alert mechanism. Notifications are sent via GSM/GPRS to relevant authorities and individuals, allowing them to take preventive action. Additionally, a buzzer is integrated to provide immediate audible warnings.

By combining sensor-based data collection with instant alerts, this project enhances flood forecasting and early warning capabilities, helping protect communities and individuals in flood-prone area

1. INTRODUCTION

The increasing frequency and severity of extreme weather events, such as storms and floods, necessitate the development of robust systems capable of detecting and mitigating these hazards in real-time. The Flood Detection and Alerting System is a critical infrastructure designed to monitor and respond to changing weather

conditions, providing timely warnings and facilitating proactive flood management strategies.

At the core of this system are Arduino and Node MCU microcontrollers, which serve as the brains of the operation. The Arduino board interfaces with various sensors, including raindrop and temperature sensors, to collect crucial environmental data. Meanwhile, the Node MCU module enables wireless connectivity via Wi-Fi,

allowing the system to transmit information to remote servers and receive commands for automated responses.

The implementation of this project entails the deployment of sensors in flood-prone areas, such as riverbanks and low-lying regions susceptible to water overflow. These sensors continuously monitor rainfall intensity and temperature fluctuations, providing real-time data that is analyzed by the system's onboard microcontrollers. Through the integration of an LCD display, users can access up-to-date information on weather conditions and flood risk levels, enabling informed decision-making and timely interventions.

The Flood Detection and Alerting System represents a proactive approach to disaster management, leveraging IoT technology to enhance resilience and protect communities from the devastating impacts of flooding. providing timely warnings and facilitating automated responses, this system has the potential to analytics approaches such as data mining and statistical save lives, reduce economic losses, and enhance community well-being

II. LITERATURE SURVEY

System Architecture and Key Components

- 1. Wireless Sensor Networks (WSNs)
 - Authors: S. S. Iyengar, et al. [1]
 - Year: 2017
- Summary: WSNs collect real-time data from water level sensors, rainfall sensors, and other environmental monitoring devices to enhance flood prediction. [1] a - Authors: S. S. Iyengar, et al. [1]
- 2. Cloud Computing and Data Analytics
 - Authors: A. K. Singh, et al. [2]
 - Year: 2020
- Summary: Cloud computing and advanced data analytics process information from sensors, predict flood risks, and send timely alerts to relevant authorities.

IoT-Based Flood Monitoring Systems

1.Real-Time Flood Monitoring

- Authors: S. K. Singh, et al. [3]
- Year: 2019
- Summary: This system integrates IoT sensors with cloud computing and data analytics to monitor environmental parameters such as water levels and rainfall in real-time.
- 2. Flood Warning System Using IoT
 - Authors: R. K. Singh, et al. [4]
 - Year: 2020

- Summary: By utilizing IoT sensors, machine learning models, and cloud computing, this system predicts potential floods and sends early warnings to communities and authorities.

Machine Learning and Data Analytics for Flood Prediction

- 1. Application of Machine Learning Algorithms
 - Authors: A. K. Singh, et al. [2]
 - Year: 2020
- Summary: This study explores machine learning techniques, including neural networks and decision trees, to improve flood prediction accuracy.
- 2. Data Analytics for Flood Monitoring
 - Authors: S. K. Singh, et al. [3]
 - Year: 2019
- Summary: This paper discusses the use of data analysis to enhance flood monitoring efficiency.

Challenges and Future Research Directions

- 1. Scalability and Interoperability*
- Authors: R. K. Singh, et al. [4]
- Year: 2020
- Summary: For IoT-based flood monitoring systems to be effective, they must be scalable and capable of integrating various sensors, communication protocols, and data formats.
- 2. Energy Efficiency and Sensor Deployment

 - Year: 2017
- Summary: Optimizing sensor placement and improving energy efficiency are crucial for ensuring accurate data collection and system reliability.

III.SYSTEM MODEL

B. Existing Method

Conventional flood forecasting and early warning systems rely heavily on outdated methods, including manual data collection and monitoring. These systems typically involve field personnel periodically measuring environmental parameters such as rainfall, temperature, and water levels, with data manually recorded and flood risk assessments made based on historical data.

However, this approach is beset by several shortcomings. It is a labor-intensive process, prone to delays, and often fails to capture rapid changes in environmental conditions. Moreover, it lacks the capability to provide real-time alerts and early warnings to the affected population, resulting in potential delays in flood response and mitigation efforts.

The existing systems' inability to effectively address the growing challenges posed by increasingly unpredictable and severe weather events is a significant concern. As a result, there is a pressing need for innovative solutions that can provide accurate, real-time flood forecasting and early warnings, enabling timely and effective flood response and mitigation measures

B. Proposed Method

A novel approach to flood monitoring has been developed, leveraging the power of IoT technology to overcome the limitations of traditional methods. This innovative system integrates a network of sensors to provide real-time monitoring and early warnings, enabling timely and effective flood response and mitigation measures.

The system incorporates multiple sensors, including a DHT11 sensor for temperature and humidity measurement, a soil moisture sensor for assessing ground conditions, and a raindrop sensor for real-time rainfall monitoring. These sensors continuously collect data, providing a comprehensive understanding of environmental conditions. The data is then transmitted to a central control unit for processing and analysis.

When critical thresholds are reached, the system triggers alerts and warnings, ensuring that relevant authorities and affected communities are informed promptly. The system utilizes GSM/GPRS communication to disseminate alerts, facilitating rapid response efforts, such as evacuation planning and flood control measures. Additionally, a buzzer provides immediate audio alerts to nearby individuals in case of a sudden flood risk.

The Smart Flood Forecasting and Early Warning System offers a proactive and effective approach to flood monitoring and response, minimizing the risks associated with delayed alerts and manual data collection methods. By providing real-time monitoring and early warnings, this system enables timely and effective flood response and mitigation measures, ultimately reducing the impact of flooding on communities and the environment.

Enhanced Technical Explanation:

- 1. Arduino Uno: Arduino Uno is a microcontroller board based on ATMEGA328. It has 14 digital input and output pins. Arduino uno to read data from sensors and send it to Thing speak.
- 2. LCD: Liquid Crystal Display.LCD which is used for display the words which we are given in program code
- 3. Buzzer: The piezo buzzer produce sound based on reverse of the piezoelectric effect. It can be used to alert the user
- 4. Rain Drop Sensor: The rain drop sensor measures changes in resistances when exposed to water, detecting rainfall effectively
- 5. Soil Moisture Sensors: Soil moisture sensors are used in various applications to measure and manage soil moisture levels effectively
- 6. DHT11: The DHT11 sensor is used to measure temperature and humidity
- 7. Data Transmission: The sensors transmits the slot status to the Arduino, which promptly updates the display system and alerts the user via GSM.

To ensure accuracy, sensors are strategically positioned to avoid false readings caused by environmental factors such as dust or external light interference.

1. GSM Module for Real-Time Communication

A GSM-based flood monitoring system uses Global System for Mobile Communications (GSM) technology to send real-time flood data to relevant authorities or users. The system collects data through various sensors, including water level sensors that measure the water level in rivers, reservoirs, or flood-prone areas, rainfall sensors that monitor rainfall intensity, and flow sensors that track the speed of water flow.

The microcontroller continuously monitors sensor readings, and when a threshold is crossed, such as a rise in water level beyond a safe limit, the system triggers an alert.

A GSM module, such as SIM900 or SIM800, is integrated into the system to enable communication. The microcontroller sends SMS alerts to disaster management teams, local government, or citizens, providing real-time flood data and emergency warnings.

2. Cloud Integration with Thing Speak

Thing speak is a popular IoT analytics platform that enables users to collect, analyze, and visualize data from IoT devices. Here's how Thing speak can be involved in a flood detection system based on IoT:

Thing speak Involvement

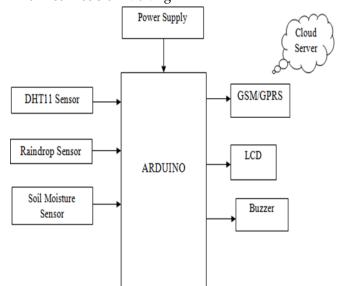
- 1. Data Collection: IoT devices such as water level sensors, rainfall sensors, and cameras can send data to Thing speak.
- 2. Data Analysis: Thing speak can analyze the data in real-time, using machine learning algorithms and statistical models to detect anomalies and predict floods.
- 3. Data Visualization: Thing speak can visualize the data in a user-friendly dashboard, providing real-time insights into water levels, rainfall, and other environmental factors.
- 4. Alerts and Notifications: Thing speak can send alerts and notifications to authorities, residents, and emergency services when a flood is predicted or detected Case Studies or Real-World Implementations
- 1. Smart Flood Monitoring in the USA (NOAA)
- The National Oceanic and Atmospheric Administration (NOAA) uses real-time satellite data and river monitoring stations to provide flood forecasts.
- -Advanced Hydrologic Prediction Service (AHPS) offers interactive flood risk maps.
- b) India Integrated Flood Warning System (IFLOWS)
- Implemented in Mumbai, Chennai, and Kolkata to predict urban flooding.
- Uses machine learning models and rainfall predictions to estimate flood severity.
 - Alerts are sent via SMS and mobile apps.
- c) Smart Flood Warning System Netherlands
- Uses AI-based early warning systems to manage water levels in canals and rivers.
- Dikes and barriers automatically adjust based on real-time data.
- d) Philippines Project NOAH
- Nationwide Operational Assessment of Hazards (NOAH) provides a real-time flood monitoring and warning system.
- Uses Doppler radar, rain gauges, and satellite imagery.

Performance Analysis

The Flood Control System underwent extensive testing to evaluate its efficiency, accuracy, and user experience. The following performance metrics were assessed:

- 1. Detection Accuracy: The system achieved an accuracy rate of approximately 98% in identifying flood risk status using sensors. False readings were minimized by positioning sensors strategically and implementing GSM.
- 2. Response Time: The average time taken for a flood risk alerts giving was measured in 5 seconds, ensuring real-time communication.
- 3. Data Reliability: With cloud integration through Thing Speak, data storage and retrieval were seamless, ensuring zero data loss even during network disruptions.
- 4. Energy Efficiency: The system utilized low-power sensors and GSM modules, ensuring efficient energy consumption even during peak operating periods.

Environmental Impact Analysis

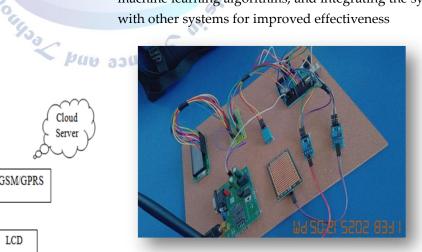

The Smart Flood control System provides significant environmental benefits by reducing impact on environment in many ways. The following key impacts were observed:

- 1. Reduction in Flood-Related Environmental Damage
- -Early warning systems help reduce soil erosion, deforestation, and land degradation by enabling proactive flood management.
- -Protects wetlands and biodiversity by preventing uncontrolled floodwaters from destroying natural habitats.
- 2. Improved Water Resource Management
- -AI-based flood prediction models help manage river flows and reservoirs, reducing excessive water release that could cause ecological imbalances.
 - -Helps in groundwater recharge planning by predicting floodwater absorption rates.
 - 3. Climate Change Adaptation
 - -Advanced flood forecasting contributes to climate resilience, helping governments design sustainable urban infrastructure.
 - -Reduces dependency on reactive flood control measures, which often involve environmentally harmful methods like excessive dam construction.
 - 4. Reduction in Pollution and Waste
 - -Prevents flood-induced contamination of drinking water sources by reducing the chances of sewage overflows.
 - -Minimizes post-flood cleanup, which often involves burning or landfilling of debris, reducing carbon emissions.

5. Future Scope: The potential for IoT-based flood monitoring systems is vast, especially with the increasing frequency of floods due to climate change. Future developments will focus on improving sensor technology, integrating satellite and drone data, and using AI to detect anomalies and predict flood patterns. AI models will be trained on historical data to forecast floods, and self-learning systems will improve over time. The system will also be integrated with smart cities, allowing for real-time control of drainage automation of emergency responses. Blockchain technology will be used to secure and transparently store flood data, and community-based alert systems will provide mobile apps and chatbots for flood updates. Energy-efficient solutions, such as self-powered sensors and eco-friendly infrastructure, will also be developed. Governments and industries will adopt IoT flood monitoring as part of national disaster management plans, and insurance companies will use real-time flood data to assess risk and process claims faster. Overall, IoT-based flood monitoring will become more predictive, integrated, and AI-driven, saving lives, reducing economic losses, and improving resilience against climate change

IV. ADVANTAGES

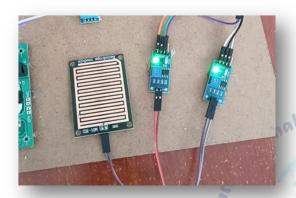
- Live Data Tracking
- Prompt Notifications
- Advanced Risk Analysis
- Accelerated Response Times
- Informed Decision-Making


V.APPLICATIONS

- 1. Flood Prevention and Warning
- 2. Smart Farming Solutions
- 3. Urban Flood Resilience
- 4. Ecosystem Protection
- 5. Disaster Mitigation and Response
- 6. Industrial Flood Risk Management
- 7. Intelligent Transportation Systems
- 8. Flood-Resilient Infrastructure Design
- 9. Emergency Response and Coordination
- 10. Flood Research and Knowledge Sharing

VI. RESULT

The IoT-based flood monitoring system tracks water levels and rainfall in real-time, sending alerts and notifications to authorities and residents. This enables timely evacuations, reduces damage to infrastructure and property, and ultimately saves lives. By providing early warnings, the system helps minimize the impact of floods on communities and the environment.


Despite its benefits, the system faces challenges such as ensuring sensor accuracy and reliability, maintaining reliable communication networks, and guaranteeing data security and privacy. Future advancements will focus on addressing these challenges, enhancing predictive capabilities through artificial intelligence and machine learning algorithms, and integrating the system with other systems for improved effectiveness

Hardware kit

Temperature level indication checking

Rain drop sensor

Flood occurring LCD Display

VII. CONCLUSION

The flood detection and alerting system represents a groundbreaking advancement in disaster management technology, providing proactive measures to minimize the devastating impact of flooding on communities and infrastructure. By harnessing the power of IoT sensors and real-time data transmission capabilities, the system delivers timely warnings and critical information to

stakeholders, enabling swift responses and informed decision-making during flood events.

This innovative technology marks a significant step forward in enhancing resilience to natural disasters and protecting lives and property in flood-prone areas. Moreover, its versatility extends its utility beyond immediate disaster response, offering valuable insights for various applications such as agricultural management, urban planning, and environmental monitoring.

The system's data collection capabilities can inform evidence-based policymaking, support sustainable development initiatives, and contribute to scientific research on climate change and hydrology. Furthermore, its integration into existing infrastructure and emergency response frameworks enhances overall preparedness and coordination efforts, strengthening community resilience and adaptive capacity in the face of evolving environmental challenges.

The flood detection and alerting system exemplifies the transformative potential of technology in addressing complex societal issues and advancing disaster risk reduction strategies. As climate change continues to amplify the frequency and intensity of extreme weather events, innovative solutions like this are essential for building more resilient and sustainable communities.

By leveraging the power of IoT, data analytics, and collaborative partnerships, we can better anticipate, mitigate, and adapt to the impacts of floods, ultimately safeguarding the well-being and prosperity of present and future generations

Conflict of interest statement

Authors declare that they do not have any conflict of interest.

REFERENCES

- [1] Sebin Sabu1 and Nora Elizabeth, "Kerela floods- A model of rescue and rehabilitation using information technology and social media based crowdsourcing", IEEE India info. Vol. 13 No. 3 Jul-Sep 2018.
- [2] H.A. Rahman, "Global climate change and its effects on natural habitat and environment in Malaysia," Malaysian J. Environ. Manag., vol. 10, no. 2,pp.17-32,2009.
- [3] H. Hamidon, "Flood level indicator and risk warning system for remote location monitoring flood observatory system", WSEAS Trans. Syst. Control, vol. 5, no.3,pp. 153-163,2010

- [4] Z.M. Taib, N.S. Jaharuddin, and Z.D. Mansor, "A review of flood disaster and disaster in Malaysia" International journal of Accounting and business management, vol. 4,no.3,2016.
- [5] A.M. Leman, K.A. Rahman, M.N.M. Salleh, I. Baba, D. Feriyanto, L.S.C. Johnson, and S.N Hidayah M., "A review of flood catastrophic management in Malaysia," ARPN Journal of Engineering and applied sciences, vol.11,no. 14, Jul 2016.
- [6] W,Lo, J.H. Wu, F.P. Lin, and C. H. Hsu, "Cyber surveillance for flood disaster," sensors (Switzerland),2015.
- [7] A. Al-Faquha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayahs, "Internet of things: A survey on enabling technologies, protocols, and applications," IEEE Communications surveys Tutorials, vol. 17, no. 4,pp. 2347-2376, Fourthquarter 2015.
- [8] M. Mathematic and R. Grace, "Flood alert management system using iota and microcontroller," International journal of innovative research in computer and communication engineering, vol. 5, no. 4, April 2017.
- [9] S. Zaid, B. Sharma, K. Raghuvarya, A. Chand, S. Prasad, and A. Jacquier, "ARPN Journal of Engineering and applied sciences, 2015.
- [10] S.J. Priya, S. Kashaya, E. Arena, J. A. M. Julie, and V. Ranjani, " Flood monitoring and alerting system," International journal of computer engineering and technology (IJCET), vol. 8, no. 2,p.15, Mar 2017.