International Journal for Modern Trends in Science and Technology Volume 11, Issue 04, pages 1012-1018.

ISSN: 2455-3778 online

Available online at: http://www.ijmtst.com/vol11issue04.html

DOI: https://doi.org/10.5281/zenodo.15313803

Transforming Logistics and Events: Multi- Functional Drone for Surveillance, Delivery, and Floral Draping

Dr.T.Venkateswara Rao¹, Sk.Ayesha², V.Rithika², Ch.Sandhya², Ch.Sai Arthi², P.Yasasmitha²

¹Professor, Department of Electronics and Communication Engineering, Vijaya Institute of Technology for Women, Enikepadu ,Vijayawada, India.

²Department of Electronics and Communication Engineering, Vijaya Institute of Technology for Women, Enikepadu, Vijayawada, India.

To Cite this Article

Dr.T.Venkateswara Rao, Sk.Ayesha, V.Rithika, Ch.Sandhya, Ch.Sai Arthi & P.Yasasmitha (2025). Transforming Logistics and Events: Multi-Functional Drone for Surveillance, Delivery, and Floral Draping. International Journal for Modern Trends in Science and Technology, 11(04), 1012-1018. https://doi.org/10.5281/zenodo.15313803

Article Info

Received: 17 March 2025; Accepted: 21 April 2025; Published: 25 April 2025.

Copyright © The Authors; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

KEYWORDS

Multi-functional Drone, Surveillance, Delivery, Floral Draping, Skydroid T10, K3A Pro Controller.

ABSTRACT

The integration of drone technology in logistics and event management has significantly enhanced operational efficiency by automating tasks that traditionally require substantial human effort. This paper introduces a novel multi-functional drone designed for surveillance, delivery, and floral draping, providing a cost-effective and versatile solution for modern logistics and event operations. The proposed system incorporates a Skydroid T10 receiver and a K3A Pro controller, ensuring seamless functionality across various operational modes. The drone is engineered to optimize energy consumption while maintaining high levels of precision in task execution. Performance evaluations indicate enhanced speed, accuracy, and adaptability compared to conventional drone systems. Additionally, the study explores the implications of integrating artificial intelligence and machine learning to enhance autonomous decision-making and operational efficiency. This research aims to highlight technological advancements, challenges, and future prospects of multi-functional drone applications across diverse industries, emphasizing their role in enhancing operational efficiency and reducing dependency on manual labor [1].

1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have transformed various industries by reducing human intervention, increasing operational efficiency, and enhancing safety standards [2]. Their widespread adoption in logistics and event management stems from their ability to perform diverse functions autonomously, thereby reducing operational costs and improving task execution speed [3]. The demand for drones in logistics and event management has significantly increased due to their ability to execute high-precision operations while minimizing human error. Despite the increasing deployment of drones in these sectors, most existing models specialize in either surveillance or delivery, limiting their utility. This segmentation of drone functionalities results in inefficiencies, as organizations are forced to deploy multiple drones for different tasks, leading to higher costs and logistical challenges.

To address these limitations, this paper presents an innovative drone system that integrates multiple functionalities—surveillance, delivery, and floral draping—into a single, efficient platform. The proposed system leverages advanced communication protocols, real-time data

Processing, and robust flight control mechanisms to optimize performance across different operational domains [4]. By incorporating automation technologies such as artificial intelligence (AI) and machine learning, the drone is

capable of adaptive decision-making, improving task efficiency and reliability [5]. Furthermore, the integration of AI-based image recognition enables enhanced surveillance capabilities, allowing the drone to autonomously detect and respond to security threats. The implementation of precise delivery mechanisms ensures that packages are transported safely to predefined locations, while the floral draping feature adds value to event management by reducing manual labor requirements.

The growing need for multi-functional drones has driven the development of this system, which aims to enhance the adaptability and scalability of UAVs in various industries. This paper discusses the design, implementation, and performance evaluation of the proposed drone system, outlining its advantages over existing technologies. Additionally, the study highlights key challenges, including regulatory constraints, energy and environmental consumption, factors, proposing solutions to enhance future UAV capabilities. addressing these concerns, the proposed multi-functional drone has the potential to redefine logistics and event management, paving the way for smarter, more efficient UAV applications.

II. METHODOLOGY

The multi-functional drone system was designed to perform three primary tasks: surveillance, delivery, and floral draping. The methodology employed in the design of the drone integrates a range of hardware components, communication systems, and flight control mechanisms that enable the seamless operation of these tasks. The system architecture focuses on optimizing hardware functionality and ensuring smooth transitions between various operational modes.

A. Hardware Components

The core components of the drone are selected based on their ability to support the multi-functional capabilities required for surveillance, delivery, and floral draping operations. The primary hardware components used in the drone system are:

Brushless Motors: These motors are chosen for their high efficiency and stability, offering smooth propulsion and precise control over the drone's flight. Brushless motors are ideal for maintaining the drone's stability during complex maneuvers, especially in flight conditions involving heavy payloads or varying environmental factors [6].

GPS Module: A high-accuracy GPS module is used for precise navigation, ensuring that the drone can autonomously follow a predetermined flight path during delivery operations. The GPS module is crucial for accurate positioning, particularly in the delivery mode, where the drone must land at specific locations to drop off packages or floral decorations [7].

High-Resolution Camera: The drone is equipped with a high-resolution camera designed to capture live video feeds for surveillance. The camera's capability to provide clear and detailed imagery enables real-time monitoring and surveillance. It also facilitates object detection and security checks, making the drone effective in identifying potential threats or monitoring event spaces [8].

Skydroid T10 Receiver: The Skydroid T10 receiver serves as the communication bridge between the drone and the ground station. It enables stable, low-latency communication, allowing the operator to control the drone during its operation and receive real-time data. This communication system ensures that the drone remains responsive and can be guided or monitored remotely during each mission phase [9].

K3A Pro Controller: The K3A Pro controller is employed for precise flight control, ensuring the drone's stability during various operational modes. It provides enhanced control over the drone's movement, including altitude and maneuvering during tasks like delivery and floral draping. The controller allows for smooth transitions between different modes and ensures that the drone remains stable even under load [10].

All Up Lift (AU W) (Kg)	Drone Weig ht (Kg)	Dron e % of AU W	Payloa d Weigh t (Kg)	Payloa d % of AUW	Perfo r manc e
13	3	100	10	75	Best
20	10	100	10	50	Good
27	18.9	70	8.1	30	Ok

TABLE 1.Performance Analysis of Drone Weight and Payload Capacity

B. Operational Modes and Flight Control

The drone is designed to operate in three primary modes, each tailored to perform a specific function: surveillance, delivery, and floral draping. These modes are enabled by hardware components working in tandem, without any need for complex programming or software-based automation.

Surveillance Mode: In this mode, the drone is tasked with providing real-time surveillance using its high-resolution camera. The camera captures video footage, which is transmitted to the ground station for live monitoring. The operator can control the drone's position and adjust its flight path based on the real-time video feed received via the Skydroid T10 receiver. The drone's GPS system aids in maintaining a stable flight path while allowing the operator to direct the drone to specific locations for targeted surveillance [11].

Delivery Mode: The delivery mode utilizes the GPS module to follow predefined coordinates autonomously, enabling the drone to transport packages from one location to another. Once the drone reaches its destination, it uses the K3A Pro controller to perform a smooth and precise landing. The drone's payload system securely holds packages during flight, ensuring that deliveries are safe and efficient. The operator can manually intervene if needed, but the drone's flight stability and GPS guidance ensure accurate landings with minimal input [12].

Floral Draping Mode: Floral draping is a unique mode designed for event management. In this mode, the drone is equipped with a mechanized release system that allows flowers or decorative items to be released in a controlled manner. The drone follows a pre-planned

flight path, and upon reaching the designated locations, the floral draping mechanism is activated. The drone's precise flight control ensures that flowers or other decorations are evenly distributed, reducing the need for manual labor in large-scale event setups [13].

TABLE 1.Performance Analysis of Drone Weight and Payload Capacity

C. Flight Control and Stability

Ensuring flight stability and smooth operation across all modes was a key challenge in the design of the multi-functional drone. The combination **of** Brushless Motors, GPS Modules, and the K3A Pro Controller enables the drone to remain stable during various tasks, even when performing precise movements or carrying heavy payloads.

Brushless Motors: These motors provide efficient propulsion and are ideal for maintaining stability in the presence of external factors such as wind or uneven surfaces during landing. They also allow for smoother transitions between modes, ensuring that the drone can shift seamlessly between surveillance, delivery, and floral draping operations.

GPS Integration: GPS ensures accurate navigation, especially for autonomous delivery missions. The integration of the GPS module allows the drone to follow an optimal flight path, minimizing the risk of errors or deviations during operations. GPS also helps ensure accurate positioning during floral draping, enabling the drone to reach precise locations for event decoration.

Manual Control via Skydroid T10 Receiver: While the drone is capable of autonomous navigation, the Skydroid T10 receiver allows the operator to maintain control, particularly during complex maneuvers such as delicate floral draping or adjusting the drone's position for more detailed surveillance. This flexibility enhances the drone's versatility and ensures that operators can intervene when needed.

III. RESULTS AND ANALYSIS

The performance of the proposed multi-functional drone system was evaluated through a series of experiments conducted across different operational scenarios. The objective was to assess the drone's efficiency, accuracy, and versatility in surveillance, delivery, and floral draping operations. The results were compared with existing drones to demonstrate the

superiority of the proposed system in terms of operational efficiency and adaptability.

A. Performance in Surveillance Mode

The surveillance mode of the drone was evaluated based on its ability to capture high-definition video footage, detect objects, and transmit real-time data to the ground successfully station. The system utilized high-resolution camera integrated with the Skydroid T10 receiver for seamless communication. The results showed a 95% accuracy in object detection and tracking during various simulated surveillance missions in indoor and outdoor environments. Compared to conventional surveillance drones, the proposed system exhibited a 30% improvement in operational speed, enabling quicker response times in security-related tasks [1].

B. Performance in Delivery Mode

In the delivery mode, the drone was tasked with transporting packages to predefined GPS coordinates autonomously. The drone's delivery system demonstrated high precision, with 98% successful deliveries within a 0.5-meter radius of the target location. The use of the K3A Pro controller ensured enhanced stability during flight, even in windy conditions. Compared to existing logistics drones, the proposed system reduced delivery times by 25%, offering a significant advantage in time-sensitive operations, such as e-commerce deliveries [2].

C. Performance in Floral Draping Mode

The floral draping functionality was tested during event management simulations, where autonomously draped flowers over designated areas. The mechanism for floral draping was controlled through the drone's onboard system, which was designed to ensure smooth operation with minimal human intervention. The results indicated a 90% success rate in correctly positioning the floral arrangements within the designated spaces. This performance exceeded expectations compared to traditional methods, which rely heavily on manual labor and can be prone to human error [3]. The drone's versatility in transitioning between multiple modes within a short period was a key advantage, offering significant labor savings and efficiency improvements for event organizers.

D. Comparison with Existing Systems

When compared to traditional drones with single-function capabilities, the proposed

multi-functional drone demonstrated marked improvement in overall performance. Conventional drones often require separate devices for different tasks, leading to increased operational costs, higher energy consumption, and logistical complexities. The need for multiple drones also results in greater maintenance efforts, battery management challenges, and the requirement for additional human supervision. In contrast, the integration of surveillance, delivery, and floral draping functionalities into a single system allowed for streamlined operations, reducing the need for multiple devices and improving resource utilization. By consolidating these capabilities, the proposed drone not only enhanced operational efficiency but also minimized downtime, as task-switching could be achieved seamlessly without requiring hardware modifications. The proposed drone achieved an average operational efficiency improvement of 30% across all tested modes, with significant gains in power consumption optimization and flight time extension. Additionally, its modular design allows for customized payload attachments, enabling easy adaptation for specialized tasks in industries such as agriculture, event management, and emergency response.

FIGURE 1. Multi-Functional Drone with Medical Payload for Emergency Response

IV. CHALLENGES AND LIMITATIONS

The development and deployment of the multi-functional drone system, while demonstrating significant advancements in logistics and event management, present several challenges and limitations that need to be addressed for wider adoption and continuous improvement. These challenges can be categorized into technical, operational, regulatory, and environmental constraints.

A. Technical Challenges

B. Operational Challenges

Battery Life and Energy Efficiency: One of the major limitations of the proposed drone system is its battery life. Multi-functional operations, such as surveillance, delivery, and floral draping, demand considerable to shorter flight energy, leading times. The energy-intensive nature of these tasks can limit the drone's ability to operate for extended periods, particularly in long-range logistics operations. The current battery technology used in drones, while improving, still falls short of providing long operational hours without the need for frequent recharging or battery swapping [20].

Weather Sensitivity and Environmental Factors: Drones are highly susceptible to weather conditions, such as wind, rain, and snow, which can significantly impact their flight stability and operational efficiency. The multi-functional drone system, though designed for versatility, is not immune to the environmental challenges that affect its ability to carry out tasks, especially in adverse weather conditions. For instance, heavy rainfall can cause the drone's sensors to malfunction or degrade the performance of electronic components, and strong winds may compromise its stability, affecting precision during operations [19].

Autonomous Navigation and Control: While the integration of advanced control algorithms and sensors, such as vision-based systems, can significantly improve navigation, autonomous control remains a challenge in complex environments. The ability to navigate in cluttered, GPS-denied environments without human intervention is critical, but it remains a limitation for many UAV systems. Advanced sensor fusion techniques and machine learning approaches could help, but these technologies still need further refinement for reliable performance across diverse and unpredictable environments [18][17].

Sensor Reliability and Data Processing: The success of multi-functional operations depends heavily on accurate and reliable sensor data. However, environmental conditions, such as fog or poor lighting, can interfere with sensor accuracy, leading to potential errors in surveillance and navigation. Real-time data processing is required for the efficient execution of tasks, but the high computational demands placed on the system can lead to latency issues, especially in real-time applications [16].

C. Regulatory and Legal Challenges

Airspace Regulation and Compliance: The operation of UAVs, particularly multi-functional drones, is subject to stringent airspace regulations that vary by region. In many countries, drones are required to follow specific guidelines regarding their operation, such as height restrictions, no-fly zones, and mandatory registration. Compliance with these regulations can limit the operational freedom of the drone system, especially in urban environments where drone flights may be restricted due to concerns over safety and privacy [22][23].

Privacy Concern: The surveillance capabilities of the multi-functional drone could raise privacy concerns, especially when deployed in public spaces. Drones equipped with high-definition cameras and other monitoring sensors may inadvertently capture sensitive information or invade privacy. The implementation of secure data storage and encryption techniques is necessary to mitigate these risks, ensuring that the drone operates within ethical and legal boundaries [11].

V. CONCLUSION & FUTURE SCOPE

In conclusion, the proposed multi-functional drone system outperformed conventional drones in all tested operational modes. The integration of surveillance, delivery, and floral draping functionalities into a single platform provides substantial advantages in terms of efficiency, cost-effectiveness, and versatility. Although challenges such as weather dependency and battery life need to be addressed, the drone's overall performance demonstrates its potential to revolutionize logistics and event management applications. The future of multi-functional drone systems, particularly those designed for surveillance, delivery, and floral draping, holds immense potential across various industries. Advances in artificial intelligence (AI) and machine learning (ML) are expected to drive autonomous decision-making, adaptive control, and efficient path planning. With improved AI algorithms, drones can adapt in real-time to dynamic environments, enabling them to operate with minimal human intervention and increased precision. Additionally, innovations in sensor technologies such as LiDAR, thermal imaging, and radar will enhance drones' ability to function in low-visibility conditions, further improving surveillance and delivery capabilities. The integration of sensor fusion will support smarter real-time decisions, increasing the drone's reliability in diverse applications. These technologies, combined with enhanced energy-efficient power systems, will boost drone performance, extending operational times and reducing the need for frequent recharging or battery replacements.

FIGURE 2. semi-Autonomous Drone in Flight for Payload Delivery Operations.

Furthermore, the future of drone systems will likely include the development of swarm robotics, where multiple drones collaborate to complete complex tasks more efficiently. Swarm-based operations, including collaborative delivery and surveillance, could drastically reduce task completion times and improve coverage. As drones become more autonomous, regulatory and ethical challenges surrounding privacy, safety, and airspace management will need to be addressed through comprehensive legal frameworks. Expanding the applications of these drones into industries such as agriculture, disaster response, and environmental monitoring will unlock new opportunities, including precision farming and real-time disaster assessments. The continuous evolution of these systems promises to transform industries, making drones integral to both everyday logistics and specialized operations.

VI. ACKNOWLEDGMENT

We sincerely thank Vijaya Institute of Technology for Women for their unwavering support throughout our project. Special appreciation goes to the Department of Electronics and Communication Engineering (ECE) for their expert guidance and valuable insights, which significantly contributed to the success of this work. We would also like to acknowledge our colleagues and reviewers for their constructive feedback, which helped refine and improve our approach.

Conflict of interest statement

Authors declare that they do not have any conflict of interest.

REFERENCES

- [1] G. Eason, B. Noble, and I. N. Sneddon, "On certain integrals of Lipschitz-Hankel type involving products of Bessel functions," Phil. Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955. (references)
- [2] M. Asadpour, A. Kossett, J. P. How, L. Biswas, M. F. Walter, and J. Taillant, "Robust cooperative control of autonomous quadrotor helicopters," in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), 2014, pp. 1707-1712. I. S. Jacobs and C. P. Bean, "Fine particles, thin films and exchange anisotropy," in Magnetism, vol. III, G. T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271–350.
- [3] C. Papachristos, S. Khattak, and A. Tzes, "Enhanced autonomous operation of UAVs in cluttered outdoor environments using FPGA-based embedded stereo vision," IEEE Trans. Industrial Electronics, vol. 64, no. 1, pp. 159-169, 2017. R. Nicole, "Title of paper with only first word capitalized," J. Name Stand. Abbrev., in press.
- [4] A. Kushleyev, D. Mellinger, C. Powers, and V. Kumar, "Towards a swarm of agile micro quadrotors," Autonomous Robots, vol. 35, no. 4, pp. 287-300, 2013.
- [5] M. Faessler, F. Fontana, C. Forster, M. Werlberger, and D. Scaramuzza, "Automatic re-initialization and failure recovery for aggressive flight with a monocular vision-based quadrotor," in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), 2015, pp. 1722-1729.
- [6] S. Bouabdallah and R. Siegwart, "Backstepping and sliding-mode techniques applied to an indoor micro quadrotor," in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), 2005, pp. 2247-2252.
- [7] J. Gancet, F. Ilzkovitz, L. Antonelli, and C. Melchiorri, "Dexterous aerial robots: The EU project ARCAS," in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), 2015, pp. 1722-1729.
- [8] D. Lee, H. Jin Kim, and S. Sastry, "Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter," International Journal of Control, Automation, and Systems, vol. 7, no. 3, pp. 419-428, 2009.
- [9] A. Mahjri, A. Benallegue, and B. Daachi, "Control of a quadrotor aerial vehicle based on a robust backstepping controller," in Proc. IEEE Mediterranean Conf. on Control & Automation (MED), 2013, pp. 603-608.
- [10] P. R. Giordano, A. Franchi, C. Secchi, and H. H. Bülthoff, "Vision-based autonomous control for human-uav interaction," in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), 2011, pp. 763-770.
- [11] A. Ollero and F. J. Rodríguez, "Drones for aerial operations in emergency and disaster response," in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), 2018, pp. 460-467.
- [12] P. Tokekar, J. Vander Hook, D. Mulla, and V. Isler, "Sensor planning for a symbiotic UAV and UGV system for precision agriculture," IEEE Trans. Robotics, vol. 32, no. 6, pp. 1498-1511, 2016.

- [13] G. Loianno, G. Cross, and V. Kumar, "Flying smartphones: Automated flight enabled by consumer electronics," in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), 2015, pp. 6148-6155.
- [14] M. Achtelik, M. Achtelik, Y. Brunet, Z. He, M. Chli, and R. Siegwart, "Onboard IMU and monocular vision-based control for MAVs in unknown in-and outdoor environments," in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), 2015, pp. 1722-1729.
- [15] L. Doitsidis, S. Weiss, A. Renzaglia, and D. Scaramuzza, "Optimal surveillance coverage for teams of micro aerial vehicles in GPS-denied environments using onboard vision," Autonomous Robots, vol. 33, no. 1, pp. 173-188, 2012.
- [16] R. Roberts, L. Yang, P. Yanik, and M. Vaziri, "Machine learning-based multi-target tracking with UAVs for dynamic environments," in Proc. IEEE Int. Conf. on Intelligent Robots and Systems (IROS), 2020, pp. 4124-4131.
- [17] H. Bayram, M. Cevik, and M. Gokasan, "Design and implementation of an efficient autonomous UAV navigation system in cluttered environments," IEEE Access, vol. 7, pp. 122225-122238, 2019.
- [18] M. Perrollaz, N. Stanciulescu, C. Laugier, and R. Ginhoux, "Autonomous UAV path planning for target search and surveillance using reinforcement learning," Robotics and Autonomous Systems, vol. 75, pp. 32-44, 2016.
- [19] E. P. Van Wyk, D. Bertram, and A. De Jager, "An energy-efficient approach to UAV-based reconnaissance missions," in Proc. IEEE Conf. on Decision and Control (CDC), 2019, pp. 5985-5990.
- [20] A. S. Morse, "Supervisory control of families of unmanned air vehicles," IEEE Trans. Automation Science and Engineering, vol. 2, no. 2, pp. 129-137, 2005.
- [21] P. Y. Wang, J. W. Lam, and J. K. Hedrick, "Adaptive control of UAVs with uncertain dynamics and environmental disturbances," in Proc. IEEE Conf. on Decision and Control (CDC), 2018, pp. 2201-2206.
- [22] D. Floreano and R. J. Wood, "Science, technology and the future of small autonomous drones," Nature, vol. 521, no. 7553, pp. 460-466, 2015.
- [23] S. Waharte and N. Trigoni, "Supporting search and rescue operations with UAVs," in Proc. IEEE Int. Conf. on Intelligent Robots and Systems (IROS), 2010, pp. 5081-5086
- [24] P. J. Edavoor, S. Raveendran, and A. D. Rahulkar, "Approximate multiplier design using novel dual-stage 4:2 compressors," IEEE Access, vol. 8,pp. 48337–48351, 2020.