

88 International Journal for Modern Trends in Science and Technology

Volume: 2 | Issue: 06 | June 2016 | ISSN: 2455-3778 IJMTST

Graph Tea: Simulating Tool for Graph

Theory & Algorithms

Bala Bhaskara Rao Emani 1 | Satya Srinivas Maddipati2 | Reddy Krishna Rao3

1Computer Science & Engineering, Sasi Institute of Tech. & Engg., Tadepalligudem, AP, India
2 Computer Science & Engineering, Sasi Institute of Tech. & Engg., Tadepalligudem, AP, India
3 Computer Science & Engineering, Sasi Institute of Tech. & Engg., Tadepalligudem, AP, India

Simulation in teaching has recently entered the field of education. It is used at different levels of instruction.

The teacher is trained practically and also imparted theoretical learning. In Computer Science, Graph theory

is the fundamental mathematics required for better understanding Data Structures. To Teach Graph theory &

Algorithms, We introduced Simulation as an innovative teaching methodology. Students can understand in a

better manner by using simulation. Graph Tea is one of such simulation tool for Graph Theory & Algorithms.

In this paper, we simulated Tree Traversal Techniques like Breadth First Search (BFS), Depth First Search

(DFS) and minimal cost spanning tree algorithms like Prims.

KEYWORDS: Simulation, Graph theory, Breadth First Search, Depth First Search , Spanning tree.

Copyright © 2016 International Journal for Modern Trends in Science and Technology

All rights reserved.

I. INTRODUCTION

Graph is a collection of nodes along with the

edges that connects the nodes. The study of

properties, operations and applications of graphs is

called Graph Theory. Graph theory is a

fundamental area of mathematics required for

computer scientist. It covers the basic knowledge

in Data structures. In computer science, graphs

are used to represent networks of communication,

data organization, computational devices, the flow

of computation, etc.

The aim of this paper is the comprehensive

understanding of Graph theory in class room.

Graph Tea is a Graph Editing framework developed

under the name of GraphLab in the department of

Mathematics in Sharif University of Technology.

CABRI-Graph [1] and Gato/CATBox [2] are

well-designed for graph algorithm visualization and

animation. However, the interactively editing power

of the graph structure is very limited. Tulip [3], [4]

is another tool for information visualization. This

tool could be used efficiently when the user knows

how to program Python language.

II. GENERATING GRAPH

Generating Graphs can be done in two ways.

First, Graphs are generated by clicking on

Generate Graph menu item and select Random

Graph. A sub window will be opened with default

edges and number of vertices values. You can

change the values according to your graph

structure. A Graph will be displayed on working

area of current Tab. To change the default

properties of nodes and edges, select the node or

edge. Then, In the properties window change the

values of the attributes. Second, Graphs can also

be generated by Clicking on new graph option. It

will prompt for type of graph, Directed, Un directed.

Select the type of graph. A new tab will be opened.

To create a vertex, click on the working area of new

tab. In this manner create number of vertices. To

draw an edge between the vertices, select the

source vertex, and then drag the mouse towards

destination vertex. In the properties window

change the weight of the edge. Figure 1 shows the

properties window. Figure 2 shows Generated

Graph.

ABSTRACT

89 International Journal for Modern Trends in Science and Technology

Graph Tea: Simulating Tool for Graph Theory & Algorithms

Fig 1 : Properties Window

Fig 2: Generated Graph

III. ALGORITHM VISUALIZATION

A. Teaching Breadth First Search with Graph Tea

Breadth-first search (BFS) is an algorithm for

traversing or searching tree or graph data

structures in the order of neighbor nodes first,

before moving to the next level neighbors. The

applications of BFS are finding the shortest path,

bipartition and Garbage collection.

The working of BFS can be visualized by using

Graph Tea. To Visualize or simulate the BFS, Select

Algorithms on menu bar. It will popup all the

algorithms that are simulated in Graph Tea tool.

Selecting BFS generates a pop up window. In that

window select Play or Play one step. Play traces the

entire algorithm. Play one step trace the algorithm

step by step.

In Step 1 Algorithm prompt for root vertex. Select

the root vertex in the graph. The algorithm will

explore the root vertex and the visited vertices are

displayed in the pop up window. Once all the

vertices from the root vertex are visited, the next

node will be explored. In this manner all the the

vertices are visited in Breadth First Order.

Given the example above, here are the steps plus

a visualization to play through each step:

 Start by exploring vertex 1.

 Then visit vertices 2, 3 & 4.

 Explore vertex 2

 Then visit 0

 Exploring 3,4 & 0 does not visit any new

node. Hence the algorithm will be

terminated.

Fig 3: Visualizing Breadth First Search in Graph Theory

90 International Journal for Modern Trends in Science and Technology

Volume: 2 | Issue: 06 | June 2016 | ISSN: 2455-3778 IJMTST

B. Teaching Depth First Search With Graph Tea

Depth-first search (DFS) is an algorithm for

traversing or searching tree or graph data

structures that explores as far as possible along

each branch before backtracking. The applications

of DFS are finding Bridges of a graph, topological

sorting and connected components. As similar to

to BFS, to trace DFS Select the root vertex and play

the algorithm.

procedure DFS(G,v):

 label v as discovered

 for all edges from v to w in G.adjacentEdges(v)

do

 if vertex w is not labeled as discovered then

 recursively call DFS(G,w)

Figure 4 : Simulating DFS algorithm in Graph Theory

C. Simulating Prim’s algorithm for Minimal
spanning tree:

Let G = (V, E) be a connected graph in which each

edge (u, v) E has an associated cost C(u, v). A

Spanning Tree for G is a subgraph of G that it is a

free tree connecting all vertices in V. The cost of a

spanning tree is the sum of costs on its edges.

In computer science, Prim's algorithm is a greedy

algorithm that finds a minimum spanning tree for a

weighted undirected graph. This means it finds a

subset of the edges that forms a tree that includes

every vertex, where the total weight of all the edges

in the tree is minimized.

Algorithm

1) Create a set mstSet that keeps track of vertices

already included in MST.

2) Assign a key value to all vertices in the input

graph. Initialize all key values as INFINITE. Assign

key value as 0 for the first vertex so that it is picked

first.

3) While mstSet doesn’t include all vertices

….a) Pick a vertex u which is not there in mstSet

and has minimum key value.

….b) Include u to mstSet.

….c) Update key value of all adjacent vertices of u.

To update the key values, iterate through all

adjacent vertices. For every adjacent vertex v, if

weight of edge u-v is less than the previous key

value of v, update the key value as weight of u-v

Fig 5: Simulating Prims algorithm in Graph Theory

91 International Journal for Modern Trends in Science and Technology

Graph Tea: Simulating Tool for Graph Theory & Algorithms

IV. CONCLUSION

Graph Theory & Algorithms are simulated by

using the tool Graph Tea. This Tool is helpful for

delivery of lectures in Graph theory & Algorithms.

We observed, using Simulation as a teaching

methodology improved understanding level of

students

ACKNOWLEDGMENT

We Would like to thank Management of Sasi

Institute of Tech. & Engg., for providing continuous

support in using & delivering the classes using

Graph Tea. It also encourages for preparation &

publication of this paper.

REFERENCES

[1] Y. Carbonneaux, J.-M. Laborde, and R. Madani,
CABRI-Graph: A tool for research and teaching in
graph theory, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 1996, vol. 1027.

[2] A. Schliep and W. Hochst¨attler, “Developing Gato

and CATBox with Python: Teaching graph

algorithms through visualization and

experimentation,” Multimedia Tools for

Communicating Mathematics, pp. 291–310, 2002.

[3] D. Auber, D. Archambault, R. Bourqui, A. Lambert,

M. Mathiaut, P. Mary, M. Delest, J. Dubois, and G.

Melanc¸on, “The Tulip 3 Framework: A Scalable

Software Library for Information Visualization

Applications Based on Relational Data,” INRIA,

Research Report RR-7860, Jan. 2012. [Online].

Available:

http://hal.archives-ouvertes.fr/hal-00659880

[4] A. Lambert and D. Auber, “Graph analysis and

visualization with Tulip-Python,” in EuroSciPy 2012

- 5th European meeting on Python in Science,

Bruxelles, Belgique, 2012-08. [Online]. Available:

http://hal.archives-ouvertes.fr/hal-00744969.

[5] M. L¨ulfesmann, S. R. Lessenich, and H. M. B¨ucker,

“Interactively exploring elimination ordering in

symbolic sparse cholesky factorization,”

International Conference on Computational Science,

ICCS 2010, vol. 1, pp. 867–874, 2010.

[6] H. B¨ucker, M. Rostami, and M. L¨ulfesmann, “An

interactive educational module illustrating sparse

matrix compression via graph coloring,” in

Interactive Collaborative Learning (ICL), 2013

International Conference on, 2013, pp. 330–335.

[7] M. T. Heath, Scientific Computing: An Introductory

Survey, 2nd ed. McGraw-Hill, 2002.

[8] R. Tamassia, Handbook of Graph Drawing and

Visualization (Discrete Mathematics and Its

Applications). Chapman & Hall/CRC, 2007.

[9] A. Bondy and U. Murty, Graph Theory, ser. Graduate
Texts in Mathematics. Springer, 2008.

